
Chapter 10:  

Memory and Data Management 
rt rev. 12.9.16 

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows: 

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed 

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.  

www.embedded-knowhow.co.uk  

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/


Memory function types 

A microprocessor needs memory for two reasons: to hold its program, and to hold 

the data that it is working with; we often call these program memory and data 

memory. To meet these needs there are a number of different semiconductor 

memory technologies available, which can be embedded on the microcontroller 

chip. 

 

Memory technology is divided broadly into two types: volatile and non-volatile.  

 

• Non-volatile memory retains its data when power is removed, but tends to be 

more complex to write to in the first place. For historical reasons it is still often 

called ROM (Read Only Memory). Non-volatile memory is generally required 

for program memory, so that the program data is there and ready when the 

processor is powered up. 

 

• Volatile memory loses all data when power is removed, but is easy to write to. 

Volatile memory is traditionally used for data memory; it’s essential to be able 

to write to memory easily, and there is little expectation for data to be retained 

when the product is switched off. For historical reasons it is often called RAM 

(Random Access Memory). 



• In any electronic memory we want to be able to store all the 1s and 0s which 

make up our data.  

• A simple one-bit memory is a coin. It is stable in two positions, with either 

“heads” facing up, or “tails”. 

• We can try to balance the coin on its edge, but it would pretty soon fall over.  

• We recognise that the coin is stable in two states, we call this bistable. 

• It could be said that “heads” represents logic 1, and “tails” logic 0. With 8 

coins, an 8-bit number can be represented and stored.  

• If we had 10 million coins, we could store the data that makes up one 

photograph of good resolution, but that would take up a lot of space indeed!  

• There are a number of electronic alternatives to the coin, which take up much 

less space. 

• One is to use an electronic bistable (or “flip-flop”) circuit. 

Essential electronic memory types 



Essential electronic memory types 

The two logic circuits shown are stable in only two states, and each can be used 

to store one bit of data. 

VCC



Essential electronic memory types 

There are a number of different types of volatile and non-volatile memory: 

RAM Random Access Memory   

SRAM  Static RAM 

DRAM Dynamic RAM 

ROM     Read Only Memory 

PROM     Programmable ROM 

EPROM     Electrically Programmable ROM 

EEPROM     Electrically Erasable PROM 

FLASH     A cheap and rapid form of EEPROM 



Introducing pointers 

Before delving into the embedded world of memory and file access, we first need 

to cover a little C/C++ background on pointers.  

Pointers are used to indicate where a particular element or block of data is stored 

in memory. 

When a pointer is defined it can be set to a particular memory address and 

C/C++ syntax allows us to access the data at that address. 

Pointers are required for a number of reasons; one is because the C/C++ 

standard does not allow arrays of data to be passed to and from functions, so in 

this case we must use pointers instead. 

For example, we may wish to pass an array of 10 data values to a function in 

order to perform a simple mean average calculation, but in C/C++ this is not 

possible and causes a syntax error if attempted. Instead, to achieve this, it is 

necessary to pass a single pointer value as an input argument to the function. 

In this instance the pointer essentially describes the memory address of the first 

element of the data array and is usually accompanied by a single argument that 

defines the size of the data array in question.  



Defining pointers 

Pointers are defined similar to variables but by additionally using the * operator. The 

following declaration defines a pointer called ptr which points to data of type int: 
 

    int *ptr;       // define a pointer which points to data of type int 

 

The specific address of a data variable, can also be assigned to a pointer by using the & 

operator, for example 
 

    int datavariable=7; // define a variable called datavariable with value 7 

    int *ptr;           // define a pointer which points to data of type int 

    ptr = &datavariable;// assign the pointer to the address of datavariable 

 

We can also use the * operator in a program to get the data from a pointer address, for 

example: 
 

    int x = *ptr;      // get the contents of location ptr and assign to x 

  

We can also use pointers with arrays, because an array is really just a number of data 

values stored at consecutive memory locations; for example: 
 

    int array[]={3,4,6,2,8,9,1,4,6};  // define an array of arbitrary values 

    int *ptr                          // define a pointer 

    ptr = &array[0];                  // assign pointer to the address of   

                                      // the first element of the array  

 



Using pointers with arrays and functions 
/* Program Example 10.5: Pointers example for an array average function 

                                                                     */ 

#include "mbed.h" 

Serial pc(USBTX, USBRX);                        // setup serial comms 

char data[]={5,7,5,8,9,1,7,8,2,5,1,4,6,2,1};    // define some input data 

char *dataptr;                                  // define a pointer for the input data 

float average;                                  // floating point average variable 

  

float CalculateAverage(char *ptr, char size);            // function prototype 

  

int main() {     

  dataptr=&data[0];                     // point to address of the first array element 

  average = CalculateAverage(dataptr, sizeof(data));           // call function 

  pc.printf("\n\rdata = "); 

  for (char i=0; i<sizeof(data); i++) {           // loop for each data value 

    pc.printf("%d ",data[i]);                     // display all the data values 

  } 

  pc.printf("\n\raverage = %.3f",average);        // display average value 

} 

  

// CalculateAverage function definition and code  

float CalculateAverage(char *ptr, char size) { 

  int sum=0;                           // variable for calculating the sum of the data 

  float mean;                          // variable for floating point mean value 

  for (char i=0; i<size; i++) { 

    sum=sum + *(ptr+i);                   // add all data elements together 

  } 

  mean=(float)sum/size;                   // divide by size and cast to floating point 

  return mean;              

} 



Useful C/C++ library functions for data control 

Function Format Summary Action 

fopen 
FILE *fopen(const char *filename, const char 

*mode); 

opens the file of name 

filename 

fclose int fclose(FILE *stream); closes a file 

fgetc int fgetc(FILE *stream); 
gets a character from a 

stream 

fgets char *fgets(char *str, int n, FILE *stream); 
gets a string of n chars from 

a stream 

fputc int fputc(int character, FILE *stream); writes character to a stream 

fputs int fputs(const char *str, FILE *stream); writes a string to a stream 

fprintf 
int fprintf(FILE *stream, const char *format, 

...); 

writes formatted data to a 

stream 

fseek 
int fseek(FILE *stream, long int offset, int 

origin); 

moves file pointer to 

specified location 

str  An array containing the null-terminated sequence of characters to be written.  

stream  Pointer to a FILE object that identifies the stream where the data is to be written (see Section B10 

  for more information on streams in C/C++.  

…  Indicates that additional formatted arguments may be specified in a list 

http://www.cplusplus.com/FILE


Using data files on the mbed 

The compiler needs to know where to store and retrieve files; this is done using the mbed 

LocalFileSystem declaration. This sets up the mbed as an accessible flash memory 

storage unit and defines a directory for storing local files.  

 

To implement, simply add the following line to the declarations section of a program: 

 
 LocalFileSystem local("local");  //Create file system named "local"  
 
A file stored on the mbed (in this example called “datafile.txt”) can therefore be opened with 

the following command: 

 
FILE* pFile = fopen("/local/datafile.txt","w"); 

 
(note the “w” refers to a file with write access) 

 

When we have finished using a file for reading or writing it is essential to close it, for 

example using 

 
fclose(pFile); 



Example mbed data file access 

/* Program Example 10.1: read and write char data bytes 

                                                             */ 

#include "mbed.h" 

Serial pc(USBTX,USBRX);              // setup terminal link 

LocalFileSystem local("local");      // define local file system 

int write_var; 

int read_var;                        // create data variables 

  

int main () 

{ 

  FILE* File1 = fopen("/local/datafile.txt","w");       // open file 

  write_var=0x23;                                       // example data 

  fputc(write_var, File1);      // put char (data value) into file 

  fclose(File1);                       // close file   

  

  FILE* File2 = fopen ("/local/datafile.txt","r");  // open file for reading 

  read_var = fgetc(File2);                  // read first data value 

  fclose(File2);                                     // close file 

  pc.printf("input value = %i \n",read_var);     // display read data value  

} 



String file access 

/* Program Example 10.2: Read and write text string data  

                                                             */ 

#include "mbed.h" 

Serial pc(USBTX,USBRX);              // setup terminal link 

LocalFileSystem local("local");      // define local file system 

char write_string[64];               // character array up to 64 characters 

char read_string[64];                // create character arrays (strings) 

         

  

int main () 

{ 

  FILE* File1 = fopen("/local/textfile.txt","w");    // open file access 

  fputs("lots and lots of words and letters", File1);// put text into file 

  fclose(File1);                                     // close file 

     

  FILE* File2 = fopen ("/local/textfile.txt","r"); // open file for reading 

  fgets(read_string,256,File2);                    // read first data value 

  fclose(File2);                                   // close file 

  

  pc.printf("text data: %s \n",read_string);       // display read data string  

} 

Read further: 
Writing formatted data, 
Section 10.4.3 



Using external memory with the mbed 

A flash SD (Secure Digital) card can be used with the mbed via the SPI protocol 

 

Using a micro SD card with a card holder cradle (as shown) it is possible to access the SD 

card as an external memory 

The SD card can be connected to the mbed as shown in the following wiring table: 

The following mbed libraries are also required: 

SDFileSystem library by Simon Ford. 

https://developer.mbed.org/users/simon/code/SDFileSystem 

FatFileSystem by mbed. 

https://developer.mbed.org/users/mbed_unsupported/code/FatFileSystem 

https://developer.mbed.org/users/simon/code/SDFileSystem
https://developer.mbed.org/users/simon/code/SDFileSystem
https://developer.mbed.org/users/mbed_unsupported/code/FatFileSystem
https://developer.mbed.org/users/mbed_unsupported/code/FatFileSystem


Writing data to an SD Card 

/* Program Example 10.4: writing data to an SD card 

                                                        */ 

#include "mbed.h" 

#include "SDFileSystem.h" 

SDFileSystem sd(p5, p6, p7, p8, "sd"); // MOSI, MISO, SCLK, CS 

Serial pc(USBTX, USBRX); 

  

int main() { 

  FILE *File = fopen("/sd/sdfile.txt", "w");       // open file 

  if(File == NULL) {                               // check for file pointer 

    pc.printf("Could not open file for write\n");  // error if no pointer 

  } 

  else{ 

    pc.printf("SD card file successfully opened\n");      // if pointer ok 

  } 

  fprintf(File, "Here's some sample text on the SD card");   // write data 

  fclose(File);                                              // close file 

} 

 



Using external USB flash memory with the mbed  

The mbed USBHost library includes a class 

called USBHostMSD, which is specifically 

intended to allow the mbed to utilise an external 

flash mass storage device (MSD) on the USB 

bus. 

This makes it simple and convenient to use 

standard USB flash drives that can hold many 

gigabytes of data.  

Conveniently the mbed application board has 

built-in USB connectors attached to pins 31 and 

32, with on-board pull-down resistors in place. 

When operating in USB host mode, the mini USB 

selector switches on the application board need 

setting accordingly. 

Insert a flash drive into the USB Type A 

connector, as shown. 



Using external USB flash memory with the mbed  

 /* Program Example 10.5: writing data to an USB flash storage device 

                                                                                                         */ 
#include "mbed.h" 
#include "USBHostMSD.h" 
  
int main() { 
  
  USBHostMSD usb("usb");  // define USBHostMSD object 
  
  while(!usb.connect()) { // try to connect a USB storage before continuing 
    wait(0.5); 
    printf("Connecting to USB MSD\n"); 
  } 
  
  FILE *File = fopen("/usb/usbfile.txt", "w");    // open file 
  if(File == NULL) {                              // check for file pointer 
    printf("Could not open file for write\n"); // error if no pointer 
  } 
  else{ 
    printf("USB card file successfully opened\n");  // if pointer ok 
  } 
  fprintf(File, "Here's some sample text on the USB card");  // write data 
  fclose(File);                                              // close file 
} 

Program Example 10.5 

implements the USB flash 

storage. 

 

In order for the program to 

compile, the mbed official 

USBHost library will need 

to be imported to the 

project. 

 

Note that the USBHost 

library contains a number 

of sub-libraries within, and 

you should be careful to 

check that every library is 

the most recent version. 



Chapter quiz questions 

1. What does the term bistable mean? 

2. How many bistables would you expect to find in the mbed’s SRAM? 

3. What are the fundamental differences between SRAM and DRAM type memory? 

4. What are the fundamental differences between EEPROM and Flash type memory? 

5. Describe the purpose of pointers and explain how they used to access the different 

elements of a data array. 

6. What C/C++ command would open a text file for adding additional text to the end of the 

current file. 

7. What C/C++ command should be used to open a text file called “data.txt” and read the 

12th character. 

8. Give a practical example where data logging is required and explain the practical 

requirements with regards to timing, memory type and size. 

9. Give one reason why pointers are used for direct manipulation of memory data.  

10. Write the C/C++ code that defines an empty 5 element array called dataarray and a 

pointer called datapointer which is assigned to the first memory address of the data 

array. 



Chapter review 

• Microprocessors use memory for holding the program code (program memory) and the 

working data (data memory) in an embedded system. 

• A coin or a logic flip-flop/bistable can be thought of as a single 1-bit memory device 

which retains its state until the state is actively changed.  

• Volatile memory loses its data once power is removed, whereas non-volatile can retain 

memory with no power. A number of different technologies are used to realise these 

memory types including SRAM and DRAM (volatile) and EEPROM and Flash (non-

volatile). 

• The LPC1768, on the mbed, has 512 KB of Flash memory, and 64 KB of SRAM. 

• Pointers point to memory address locations to allow direct access to the data stored at 

the pointed location. 

• Pointers are generally required owing to the fact that C/C++ does not allow arrays of 

data to be passed into functions 

• The stdio.h library contains functions that allow us to create, open and close files, as 

well as read data from and write data to files. 

Read further: 
Try out the data logging 
mini-project described in 
Section 10.7 

• Files can be created on the mbed for storing and retrieving data 

and formatted text. 

• An external SD memory card or USB Flash drive can be interfaced 

with the mbed to allow larger memory.  


