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An introduction to digital audio  

Digital audio systems are nowadays all around us, built into computers, mobile phones, 
toys and car stereos, as well as in professional music systems used in music recording 
studios and performance venues. 
 
Digital audio brings advantages of reliability, sound quality and storage space, as well as 
significant benefits that can be delivered through portability, online music catalogues 
and mobile (wireless) data access. 
 
A digital audio interface (sometimes called a soundcard) incorporates analog-to-digital 
and digital-to-analog convertors (ADCs and DACs).  
 
While the audio is represented as digital data, it can also be manipulated through digital 
signal processing (DSP), which relies on mathematical algorithms to enhance or change 
the audio properties of the data, such as through filtering, or to delay and repeat 
sounds, or to make a poor quality recording sound perfectly in tune. 
 
DSP algorithms are also used to reduce the file size of music, such as the MP3 algorithm, 
which enables large amounts of audio data to be streamed over the internet with only a 
small perceivable loss in audio quality. 



Sending USB MIDI data from an mbed 

MIDI is a serial message protocol that allows digital musical instruments to communicate 
with digital signal processing systems which can turn those signals into sound. In 1999 a 
new MIDI standard was developed to allow messaging through the more modern USB 
protocol. 
 
In a very simple MIDI system the most valuable information is  

• Whether a musical note is to be switched on or off, 
• The pitch of the note. 

 
In most cases an audio sequencer software package will automatically recognise an 
mbed MIDI interface and allow it to control a software instrument or synthesizer. 
 
A MIDI interface can be created by first importing the USBDevice library, importing the 
USBMIDI.h header file, and initialising the interface as follows: 
 

USBMIDI midi;                          // initialise MIDI interface 

 
A MIDI message to sound a note is activated by the following command: 
 

midi.write(MIDIMessage::NoteOn(note)); // play musical note 

Read further: 
See table of 
MIDI note 
values in 
Section 13.2 



Sending USB MIDI data from an mbed 

/* Program Example 13.1: MIDI messaging with variable scroll speed 

                                                                   */ 

#include "mbed.h" 

#include "USBMIDI.h” 

USBMIDI midi;                        // initialise MIDI interface 

AnalogIn Ain(p19);                   // create analog input (potentiometer) 

  

int main() {              

    while (1) {     

        for(int i=48; i<72; i++) {                 // step through notes 

            midi.write(MIDIMessage::NoteOn(i));    // note on 

            wait(Ain);                             // pause 

            midi.write(MIDIMessage::NoteOff(i));   // note off   

            wait(2*Ain);                           // pause 

        } 

    } 

} 
The output of Program 
Example 13.1 is shown here 
in the MIDI control window 
of Apple Logic software. 

Read further: 
Experiment with more 
MIDI features shown in 
Program Examples 13.2 
and 13.3 in the textbook. 



Digital audio processing? 

• Digital audio processing, or more generally digital signal processing (DSP) refers to 
the computation of mathematically intensive algorithms applied to data signals 
 

• A DSP chip provides rapid instruction sequences, such as shift-and-add and multiply-
and-add (sometimes called multiply-and-accumulate or MAC), which are commonly 
used in signal processing algorithms. 
 

• Digital filtering and frequency analysis with the Fourier transform require many 
numbers to be multiplied and added together, so a DSP chip provides specific internal 
hardware and associated instructions to make these operations rapid in operation 
and easier to code in software. 
 

• A DSP chip is therefore particularly suitable for number crunching and mathematical 
algorithm implementations. 
 

• It is actually possible to perform DSP applications with any microprocessor or 
microcontroller, though specific DSP chips will out-perform a standard microprocessor 
with respect to execution time and code size efficiency. 

 



An mbed DSP example 

• It is possible to develop an mbed program that: 

• reads an analog audio signal in via the mbed ADC 

• processes the data digitally 

• then outputs the signal via the mbed DAC 

 

• The analog output signal can be visualised on an oscilloscope or evaluated audibly by 
connecting it to a loudspeaker amplifier (such as a set of portable PC speakers).  

 

• We need three audio files, one of a 200 Hz sine wave, a 1000 Hz sine wave and one of 
the two sine waves mixed together.  

 

• A simple way to create a signal source is to use a host PC’s audio output while playing 
an audio file of the desired signal data.  

 



An mbed DSP example 

The audio files can be played directly from a host PC to an mbed analog input pin. 
 
The signal can also be viewed on an oscilloscope, which shows that the signal oscillates 
positive and negative about 0 V. 
 
This isn’t much use for the mbed, as it can only read analog data between 0 and 3.3 V, so 
all negative data will be interpreted as 0 V. 
 

It is therefore necessary to add a 
small coupling and biasing circuit 
to offset the signal to a midpoint 
of approximately 1.65 Volts.  
 
The circuit shown effectively 
couples the host PC’s audio 
output to the mbed.  



An mbed DSP example 

/* Program Example 13.5 DSP input and output using a 20 kHz ticker object 

                                                     */ 

#include "mbed.h" 

//mbed objects 

AnalogIn Ain(p15); 

AnalogOut Aout(p18); 

Ticker s20khz_tick;  

  

//function prototypes 

void s20khz_task(void); 

//variables and data 

float data_in, data_out; 

  

//main program start here 

int main() { 

  s20khz_tick.attach_us(&s20khz_task,50);        // attach task to 50us tick                 

} 

  

// function 20khz_task 

void s20khz_task(void){ 

  data_in=Ain; 

  data_out=data_in; 

  Aout=data_out; 

} 



Signal reconstruction 

If you look closely at the audio signals input to and ouput from the mbed,  you will see 
that the DAC output has discrete steps. This is more obvious in the high frequency signal 
as it is closer to the sampling frequency chosen. 

With many audio DSP systems, the analog output from the DAC is converted to a 
reconstructed signal by implementing an analog reconstruction filter, this removes all 
steps from the signal leaving a smooth output. 



The reconstruction filter 

In audio applications, a 
reconstruction filter is usually 
designed to be a low pass filter 
with a cut-off frequency at 
around 20 kHz, because the 
human hearing range doesn’t 
exceed 20 kHz.  
 
The reconstruction filter shown 
can be implemented with the 
current example to give a 
smooth output signal.  
 
Note that after the low-pass 
filter, a decoupling capacitor is 
also added to remove the 1.65 
V DC offset from the signal.  



An mbed DSP example 

The complete circuit diagram for our mbed DSP example is therefore as follows: 



Digital filtering example 

Filters are used to remove chosen frequencies from a signal. The diagram shows a signal 
with both low frequency and high frequency components. 
 
We may wish to remove either the low frequency component - by implementing a high-
pass filter (HPF) - or remove the high frequency component - by implementing a low-
pass filter (LPF). 

We can perform the filtering with an active or 
passive analog filter. 
 
We can also perform the same process in software 
with a digital signal processing operation. 



Adding a digital low-pass filter 

We can add a digital low-pass filter routine to filter out the 1000 Hz frequency 
component. This can be assigned to a switch input so that the filter is implemented in 
real-time when a push button is pressed.  

In this example we can use a 
3rd order infinite impulse 
response (IIR) filter, as shown 
in block diagram form. 
 
The IIR filter uses recursive 
output data (i.e. data fed 
back from the output), as 
well as input data, to 
calculate the filtered output.  
 



Adding a digital low-pass filter 

The filter results in the following equation for calculating the filtered value given the 
current input, the previous 3 input values and the previous 3 output values: 
 
 
 
 
 
Where:    

• x(n) is the current data input value, 
• x(n-1) is the previous data input value, x(n-2) is the data value before that, and so on,  
• y(n) is the calculated current output value, 
• y(n-1) is the previous data output value y(n-2) is the data value before that, and so on, 
• a0-3 and b0-3 are coefficients (filter taps) which define the filter’s performance. 

 

We can implement this equation to achieve filtered data from the input data. 
 
The challenging task is determining the values required for the filter coefficients to give 
the desired filter performance. Filter coefficients can however be calculated by a number 
of software packages, such as the Matlab Filter Design and Analysis Tool or online at 
 

http://www-users.cs.york.ac.uk/~fisher/mkfilter/  
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Adding a digital low-pass filter 

/*Program Example 13.6 Low pass filter function for 3rd order IIR with 20 kHz 

sample frequency and 600 Hz cutoff frequency 

                                              */ 

float LPF(float LPF_in){ 

     

  float a[4]={1,2.6235518066,-2.3146825811,0.6855359773}; 

  float b[4]={0.0006993496,0.0020980489,0.0020980489,0.0006993496}; 

  static float LPF_out; 

  static float x[4], y[4];   

  

  x[3] = x[2]; x[2] = x[1]; x[1] = x[0];      // move x values by one sample 

  y[3] = y[2]; y[2] = y[1]; y[1] = y[0];      // move y values by one sample 

  

  x[0] = LPF_in;                              // new value for x[0]  

 

  y[0] =   (b[0]*x[0]) + (b[1]*x[1]) + (b[2]*x[2]) + (b[3]*x[3])                        

            + (a[1]*y[1]) + (a[2]*y[2]) + (a[3]*y[3]); 

  

  LPF_out = y[0];  

  return LPF_out;                         // output filtered value 

} 

Here we can see the calculated filter values for the a and b coefficients.  
 
Note that we have used the static variable type for the internally calculated data values, 
which allows specific values to be retained in the function during program execution. 



Adding a digital low-pass filter (with pushbutton activation) 

We can now assign a conditional statement to a digital input, allowing the filter to be 
switched in and out in real time. The following conditional statement implemented in 
the 20 kHz task will allow real-time activation of the digital filter 
 
  data_in=Ain-0.5; 

  if (LPFswitch==1){ 

    data_out=LPF(data_in); 

  } 

  else { 

    data_out=data_in; 

  } 

  Aout=data_out+0.5; 

 

Notice that we normalise the signal to an average value of zero, so the signal oscillates 
positive and negative and allows the filter algorithm to perform DSP with no DC offset in 
the data, with the line  
 
  data_in=Ain-0.5; 

 
The mbed DAC anticipates floating point data in the range 0.0 to 1.0, so we 
also add the mean offset back to the data before we output, in the line  
  
  Aout=data_out+0.5; 

Read further: 
Digital high-
pass filter 
example in 
Section 13.4.2 



Audio delay and echo effect 

Read further: 
Audio delay 
and echo 
effect project 
in Section 13.5 

Signal in 

Signal out 



Working with wave audio files 

A number of signal processing applications rely on data which has previously been 
captured and stored in data memory. 
 
Continuing with examples relating to digital audio, this can be explored by analysing 
wave audio files and evaluating the requirements in order to output a continuous and 
controlled stream of audio data.  

There are many types of audio 
data file, of which the wave 
(.wav) type is one of the most 
widely used. 
 
The wave header information 
details, for example, the 
resolution and sample frequency 
of the audio, as shown. 
 
By reading this header it is 
possible to accurately decode 
and process the contained audio 
data.  



Working with wave audio files 

It is possible to identify much of the wave header information simply by opening a .wav 
file with a text editor application, as shown.  

Here we see (the ASCII characters for ChunkID (“RIFF”), Format (“WAVE”), Subchunk1ID 
(“fmt”) and Subchunk2ID (“data”). These are followed by the ASCII data which makes up 
the raw audio. 



Working with wave audio files 

Looking more closely at the header information for this file in hexadecimal format, the 
specific values of the header information can be identified, as shown.  

Note also that for each value made up of multiple bytes, the least significant byte is 
always given first and the most significant byte last. 
 
For example, the four bytes denoting the sample rate is given as 0x80, 0x3E, 0x00 and 
0x00, which gives a 32 bit value of 0x00003E80 = 16000 decimal.  



Reading the wave file header with the mbed 

/* Program Example 13.8 Wave file header reader (wav data stored on SD card) 

                                                                             */ 

#include "mbed.h" 

#include "SDFileSystem.h" 

  

SDFileSystem sd(p5, p6, p7, p8, "sd"); 

Serial pc(USBTX,USBRX);                                   // set up terminal link 

char c1, c2, c3, c4;                                      // chars for reading data in 

int AudioFormat, NumChannels, SampleRate, BitsPerSample ;  

  

int main() { 

    pc.printf("\n\rWave file header reader\n\r"); 

    FILE  *fp = fopen("/sd/sinewave.wav", "rb");             // open SD card wav file 

    fseek(fp, 20, SEEK_SET);                                 // set pointer to byte 20    

    fread(&AudioFormat, 2, 1, fp);                                // check file is PCM 

    if (AudioFormat==0x01) { 

        pc.printf("Wav file is PCM data\n\r"); 

    }  

    else { 

        pc.printf("Wav file is not PCM data\n\r"); 

    } 

    fread(&NumChannels, 2, 1, fp);                          // find number of channels 

    pc.printf("Number of channels: %d\n\r",NumChannels); 

    fread(&SampleRate, 4, 1, fp);                                // find sample rate 

    pc.printf("Sample rate: %d\n\r",SampleRate); 

    fread(&BitsPerSample, 2, 1, fp);                             // find resolution 

    pc.printf("Bits per sample: %d\n\r",BitsPerSample); 

    fclose(fp); 

} 



Reading and outputting mono wave data 

For this example we will use a 16-bit mono wave file of a pure sine wave of 200 Hz. 
 
The audio data in a 16-bit mono .wav file is arranged similar to the other data seen in the 
header.  
 
The data starts at byte 44 and each 16-bit data value is read as two bytes with the least 
significant byte first. 
 
Each 16-bit sample can be outputted directly on pin 18 at the rate defined by 
SampleRate.  
 
It is very important to take good care of data input and output timing when working with 
audio, as any timing inaccuracies in playback can be heard as clicks or stutters. 
 
This can be a challenge because interrupts and timing overheads sometimes make it 
difficult for the audio to be streamed directly from the SD card at a constant rate. 
 
We therefore need to use a buffered system to enable accurate timing control.  
 



Reading and outputting mono wave data 

A good method to ensure accurate timing control when working with audio data is to 
use a circular buffer. 
 
The buffer allows data to be read in from the data file and read out from it to a DAC. 
 
If the buffer can hold a number of audio data samples, then, as long as the DAC output 
timer is accurate, it doesn’t matter so much if the time for data being read and 
processed from the SD card is somewhat variable.  
 
When the circular buffer 
write pointer reaches the 
last array element, it wraps 
around so that the next data 
is read into the first memory 
element of the buffer. 
 
There is a separate buffer 
read pointer for outputting 
data to the DAC, and this 
lags behind the write buffer. 



Reading and outputting mono wave data 

/* Program Example 13.9: 16-bit mono wave player 

                                                             */ 

#include "mbed.h" 

#include "SDFileSystem.h" 

#define BUFFERSIZE 4096                                       // number of data in circular buffer 

SDFileSystem sd(p5, p6, p7, p8, "sd"); 

AnalogOut DACout(p18); 

Ticker SampleTicker; 

int SampleRate; 

float SamplePeriod;                                           // sample period in microseconds 

int CircularBuffer[BUFFERSIZE];                               // circular buffer array 

int ReadPointer=0; 

int WritePointer=0; 

bool EndOfFileFlag=0; 

  

void DACFunction(void);                                       // function prototype 

  

int main() { 

  FILE  *fp = fopen("/sd/testa.wav", "rb");                   // open wave file 

  fseek(fp, 24, SEEK_SET);                                    // move to byte 24 

  fread(&SampleRate, 4, 1, fp);                               // get sample frequency 

  SamplePeriod=(float)1/SampleRate;                           // calculate sample period as float 

  SampleTicker.attach(&DACFunction,SamplePeriod);             // start output tick 

  

  while (!feof(fp)) {                                    // loop until end of file is encountered  

    fread(&CircularBuffer[WritePointer], 2, 1, fp); 

    WritePointer=WritePointer+1;                         // increment Write Pointer 

    if (WritePointer>=BUFFERSIZE) {                      // if end of circular buffer 

        WritePointer=0;                                  // go back to start of buffer    

    } 

  } 

  EndOfFileFlag=1; 

  fclose(fp); 

} 



Reading and outputting mono wave data 

  

// Program Example 13.9 Continued  

 

// DAC function called at rate SamplePeriod 

 

void DACFunction(void) { 

 

  if ((EndOfFileFlag==0)|(ReadPointer>0)) {     // output while data available 

 

    DACout.write_u16(CircularBuffer[ReadPointer]);   // output to DAC 

    ReadPointer=ReadPointer+1;                       // increment pointer 

 

    if (ReadPointer>=BUFFERSIZE) { 

      ReadPointer=0;                            // reset pointer if necessary 

    } 

  } 

} 



Reading and outputting mono wave data 

When Program Example 13.9 is implemented with a pure mono sine wave audio file, 
initially the results will not be correct. Figure a below shows the actual oscilloscope trace 
of a sine wave read using this Program Example.  
 
Clearly this is not an accurate reproduction of the sine wave data. The error is because 
the wave data is coded in 16-bit two’s-complement form, which means that positive data 
occupies data values 0 to 0x7FFF and values 0x8000 to 0xFFFF represent the negative 
data. A simple adjustment of the data is therefore required in order to output the 
correct waveform as shown in Figure b. 

Read further: 
Two’s complement 
arithmetic covered 
in Appendix A 



High-fidelity digital audio with the mbed  

The mbed LPC1768 has a built in 12-bit ADC and a 10-bit DAC. However, professional 
digital audio systems rely heavily on 16-bit and 24-bit systems to record and playback 
high-fidelity (i.e. low distortion) audio; the standard compact disc audio format uses 16-
bit data at a sample frequency of 44.1 kHz for example. 
 
Additionally high quality audio is often in a stereo format with left and right audio 
channels. Therefore, to work with 16-bit (or greater) resolution audio data, a more 
powerful audio interface chip must be used.  
 
The Texas Instruments TLV320AIC23B chip is a high-performance stereo audio convertor 
with integrated analog functionality. 
 
 The TLV320’s ADCs and DACs can process 2 
channels of 16, 20, 24 or 32 bit data at sample 
rates up to 96 kHz. 
 
Conveniently, the Synergy AudioCODEC by 
DesignSpark is designed to easily interface the 
TLV320 to the mbed, with PCB mounted 
3.5mm stereo audio sockets and on-board 
analog signal conditioning 



The Inter-IC Sound (I2S) serial protocol 

• The TLV320 uses a serial digital audio protocol called I2S (Inter-IC Sound) to 
communicate with a microcontroller. The I2S protocol uses three signal lines: 
• continuous serial clock (SCK) 
• word select (WS) 
• serial data (SD) 

 
• The device generating SCK and WS is defined as the master. 

 
• Serial data is transmitted in two’s complement format with the MSB first. 

 
• The word select line indicates the channel being transmitted (0=left and 1=right). 
 
 
 

Read further: 
mbed I2S connection to 
the Synergy AudioCODEC 
is shown in Table 13.3 



Outputting audio data from the TLV320  

// Program Example 13.10 program structure for outputting high-quality audio 

                                                                            // 

#include "mbed.h" 

#include "TLV320.h"      // the I2SSlave header is linked from within TLV320.h 

#define BUFFERSIZE 0xff  // number of data in circular buffer = 256 

#define PACKETSIZE 8     // number of data values in a single audio package 

  

TLV320 audio(p9, p10, 52, p5, p6, p7, p8, p29);       //TLV320 object 

  

int CircularBuffer[BUFFERSIZE];                   // circular buffer array 

int ReadPointer=0; 

int WritePointer=0; 

  

// ** Additional variables to be declared here 

  

// ** Function prototypes 

void SetupAudio (void); 

void PlayAudio(void); 

void FillBuffer(void); 

  

// ** Main function 

int main(){ 

  SetupAudio();                 // call SetupAudio function 

  while (1) { 

    FillBuffer();             //continually fill circular buffer 

  } 

} 

  

// ** Additional functions to be added here 

Read further: 
Description of 
Program Example 
13.10 in textbook 
Section 13.7.2 



Outputting audio data from the TLV320  

// Program Example 13.11 functions for initialising high-quality audio output 

                                                                           // 

 

// ** Function to setup TLV320 *** 

void SetupAudio(void){ 

  audio.power(0x02);              //power up TLV to audio input/output mode 

  audio.frequency(44100);         //set sample frequency 

  audio.format(16, 0);            //set transfer protocol - 16 bit, stereo 

  audio.outputVolume(0.8, 0.8); 

  audio.attach(&PlayAudio);       //attach interrupt to send data to TLV320 

  audio.start(TRANSMIT);          //interrupt come from the I2STXFIFO only 

} 

 

 

// ** Function to read from circular buffer and send data to TLV320 *** 

void PlayAudio(void){ 

  audio.write(CircularBuffer, ReadPointer, PACKETSIZE);// write to buffer 

  ReadPointer += PACKETSIZE;       // increment read pointer 

  ReadPointer &= BUFFERSIZE;       // if end of buffer then reset to 0 

  theta -= PACKETSIZE;             // decrement theta 

} 



Outputting audio data from the TLV320  

// Program Example 13.12 Function to load square wave data to circular buffer 

                                                                      // 

void FillBuffer(void){ 

  if (theta < BUFFERSIZE) { 

    for (int i=0; i<PACKETSIZE; i++) {      // loop for PACKETSIZE samples    

      // create squarewave with freq=fs/(2*halfperiod) 

      if ((counter+i)<halfperiod) {   

        x=0x8000;                     // 2s compliment for -1 (16 bit) 

      } else if ((counter+i)<(halfperiod*2)) { 

        x=0x7fff;                     // 2s compliment for +1 (16 bit) 

      } else { 

        counter=0; 

      } 

      //put data in buffer (right = MS 16 bits, left = LS 16 bits) 

      CircularBuffer[WritePointer+i]=(x<<16)|(x); 

    }  

    theta+=PACKETSIZE;                     // increment theta 

    WritePointer+=PACKETSIZE;              // increment write pointer 

    WritePointer &=BUFFERSIZE;        // if end of buffer then reset to 0 

    counter+=PACKETSIZE;              // increment square wave counter 

  } 

} 

 
You can combine program examples 13.10, 13.11 and 13.11 to generate a high fidelity square wave 
from AudioCODEC. The frequency of the square wave will depend on the value of halfperiod. The 
square wave frequency in Hz is given by 
 



 
Read further: 
 
The textbook covers further examples of high fidelity 
digital audio, including: 
  
• High-fidelity wave file player (Section 13.7.3) 
 
• High-fidelity audio recording (Section 13.7.4) 
 



Chapter quiz questions 

1. What does the acronym MIDI stand for? 

2. What data might be contained in a MIDI message (give two examples)?  

3. What is a circular buffer and why might it be used in digital audio systems? 

4. What is the difference between an FIR and an IIR digital filter? 

5. Explain the role of analog biasing and anti-aliasing when performing an analog-to-digital conversion.  

6. What is a reconstruction filter and where would this be found in an audio DSP system? 

7. What are the potential effects of poor timing control in an audio DSP system? 

8. A wave audio file has a 16-bit mono data value given by two consecutive bytes. What will be the 

correct corresponding voltage output, if this is output through the mbed’s DAC, for the following data? 

a. 0x35 0x04 

b. 0xFF 0x5F 

c. 0x00 0xE4 

9. Explain the I2S communications protocol and how it is utilised in digital audio applications. 

10. Give a block diagram design of a DSP process for mixing two 16-bit data streams. If the data output is 

also to be 16-bit, what consequences will this process have on the output data resolution and 

accuracy? 



Chapter review 

• The MIDI protocol allows music systems to be connected together and communicate musical 
data, such as pitch and velocity 
 

• Digital audio processing systems and algorithms are used for managing and manipulating streams 
of data and therefore require high precision and timing accuracy. 
 

• A digital filtering algorithm can be used to remove unwanted frequencies from a data stream, and 
other audio processing algorithms can be used for manipulating the sonic attributes of audio. 
 

• A DSP system communicates with the external world through analog-to-digital convertors and 
digital-to-analog convertors, so the analog elements of the system also require careful design. 
 

• DSP systems usually rely on regularly timed data samples, so the mbed Timer and Ticker 
interfaces come in useful for programming regular and real-time processing. 
 

• Wave audio files hold high-resolution audio data, which can be read from an SD card and output 
through the mbed DAC. 
 

• Digital audio systems require high-resolution (minimum 16-bit) ADCs and DACs in order to record 
and playback high-quality music files. 
 

• Data management and effective buffering is required to ensure that timing and data overflow 
issues are avoided. 


