Newnes

FAST AND EFFECTIVE
EMBEDDED SYSTEMS

DESIGN

Applying the
ARM mbed

Second Edition

Rob Toulson and Tim Wilmshurst

Chapter 14: Letting go
of the mbed Libraries ...

If you use or reference these slides or the associated textbook, please cite the original authors’work as follows:

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed
(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.

www.embedded-knowhow.co.uk

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/

Letting Go of the mbed Libraries

The mbed library contains many useful functions, which allow us to write simple
and effective code. This seems a good thing, but it is also sometimes limiting.
What if we want to use a peripheral in a way not allowed by any of the
functions? Therefore it is useful to understand how peripherals can be
configured by direct access to the microcontroller’s registers. In turn, this leads
to a deeper insight into some aspects of how a microcontroller works. As a by-
product, and because we will be working at the bit and byte level, this study
develops further skills in C programming.

Control Register Concepts

How does the CPU, running its program, communicate with all the peripherals
on the microcontroller?

Up to 64 KB | Upto 512 KB Test/ Trace Nested CPU PLL
SRAM FLASH Debug VIC
Brown Out Detect
SRAM FLASH Cortex-M3 VPU
Controller Accelerator Core Power On Reset
F F 3 ¥ F 3 F 3
Y v Y Y Y
Multi-layer AHB Matrix
r Y F 3 F 3
A 2 A J Y
Ethernet MAC DMA USB Host/OTG/D PHY | PLL IDMA GP DMA
3x12C 3 x 25 4 x UARTs 2 x
FM+ SSP/SPI RS485/IrDA/Modem CAN2.0B
A A r 3 A JL
v v v A J r
Advanced Peripheral Bus
F 3 ¥ 3 h F 3 h
L J L J JF Y JF
12-bit/8-ch 10-bit 4 x 32-bit Motor Quad Encoder
ADC DAC Timers Control PWM Interface
brb276

Control Register Concepts
Each microcontroller peripheral has one or more system control registers which

act as the doorway between the peripheral and the CPU.

Register's Unigue Address %

To the CPU, these
registers look just like
memory locations, and
each has its own address
iIn the memory map.

Each of the bits in the
register is wired across to
the peripheral. They might
carry control or status
information, or provide a
path for data flow.

The microcontroller
peripherals also usually
generate interrupts, for
example to flag when an
ADC conversion IS
complete.

The CPU

—>

Data Bus

Confrol

Information

Status
Information

<

Data

Interchange

Interrupt(s)

Peripheral

mbed Digital I/O Control Registers

Using the control registers, it is possible to set each port pin as an input or as an
output. Each port has a 32-bit register whose bits control the direction of each of

its pins, called the FIODIR registers. There are also single-byte versions.

A second set of registers, called FIOPIN, hold the data value of the

microcontroller’s pins, whether they have been set as input or output.

Register Register Function Register
Name Address
FIOnDIR Sets the data direction of each pin in Port n, where n takes value 0 to 4. A port pin -
is set to output when its bit is set to 1, and as input when it is set to 0. Accessible
as word. Reset value = 0, i.e. all bits are set to input on reset.
FIOODIR Example of above for Port 0. 0x2009C000
FIO2DIR Example of above for Port 2. 0x2009C040
FIOnDIRp Sets the data direction of each pin in byte p of Port n, where p takes value 0 to 3. -
A port pin is set to output when its bit is set to 1. Accessible as byte.
FIOODIRO Example of above, Port 0 byte 0. 0x2009C000
FIOODIR1 Example of above, Port O byte 1. 0x2009C001
FIO2DIRO Example of above, Port 2 byte 0. 0x2009C040
FIOOPIN Sets the data value of each bit in Port O or 2. Accessible as word. Reset value = 0. | 0x2009C014
FIO2PIN 0x2009C054
FIOOPINO Sets the data value of each bit in least significant byte of Port 0 or 2. Accessible as | 0x2009C014
FIO2PINO byte. Reset value = 0. 0x2009C054

Example Digital I/O Control Registers

Connecting LPC1768 pins to mbed pins

Most of the mbed pins connect directly to the LPC1768 microcontroller. These
connections can be seen in the mbed circuit diagram, and are summarised
below. Against each mbed pin which connects directly is shown the LPC1768 pin
number, its port bit id, and any further function applied by the mbed. Any function
not used by the mbed is not shown (but can be found in the data sheet).

h
76(P0.9/MOSI1) ‘mos -
77(P0.8/MISO1) mm .
78(P0.7/SCK1) W
79(P0.6) ={ BE -
46(P0.0/TXD3/SDA1)
47(P0.1/RXD3/SCL1) :
60(P0.18/MOSI)
61(P0.17/MISO) :
62(P0.15/TXD1/SCK)
63(P0.16/RXD1) W"m
9(P0.23/AD0.0)
8(P0.24/AD0.1)
7(P0.25/AD0.2)
6(P0.26/AD0.3/A0UT)
21(P1.30/AD0.4)
20(P1.31/ADO0.5)

81(P0.4/CAN_RX2)
80(P0.5/CAN_TX2)
M’m“ 48(P0.10/TXD2/SDA2)
49(P0.11/RXD2/5CL2)
75(P2.0/PWM1.1)
74(P2.1/PWM1.2)

73(P2.2/PWM1.3)
70(P2.3/PWM1.4)
69(P2.4/PWM1.5)
68(P2.5/PWM1.6)

LED1: P1.18 LED2:P1.20 LED3:P1.21 LED3:P1.23

A Digital Output Application

This program replicates the opening LED flashing program, without using mbed
libraries. It switches port 2 bit 0 (and hence mbed pin 26) high and low.

/*Program Example 14.1: Sets up a digital output pin using control registers, and
flashes an led.
*/
// function prototypes
void delay (void) ;

//Define addresses of digital i/o control registers, as pointers to volatile data

#define FIO2DIRO (*(volatile unsigned char *) (0x2009C040))
#define FIO2PINO (*(volatile unsigned char *) (0x2009C054))
int main () {
FIO2DIR0=0xFF; // set port 2, lowest byte to output
while (1) {
FIO2PINO |= 0x01; // OR bit 0 with 1 to set pin high
delay () ;
FIO2PINO &= ~0x01; // BND bit 0 with 0 to set pin low
delay () ;

}
}
//delay function
void delay (void) {
int j; //loop variable 7
for (3=0;3<1000000;j++) {
Jt++;
j-=; //waste time

}

Digital Inputs

We can create digital inputs simply by setting a port bit to input, using the
correct bit in an FIODIR register. Program Example 14.3 develops the previous
example, by including a digital input from a switch.

/* Program Example 14.3: Uses digital input and output using control registers, and
flashes an LED. LEDS connect to mbed pins 25 and 26. Switch input to pin 9.

*/
// function prototypes
void delay (void) ;
//Define Digital I/O registers
#define FIOODIRO (*(volatile unsigned char *) (0x2009C000
#define FIOOPINO (*(volatile unsigned char *) (0x2009C014
#fdefine FIO2DIRO (*(volatile unsigned char *) (0x2009C040)
#define FIO2PINO (*(volatile unsigned char *) (0x2009C054)
//some variables

)
)

—_ — — ~—

(
(
(
(

char a;
char b;
char 1i;
int main () {
FIOODIR0=0x00; // set all bits of port 0 byte 0 to input
FIO2DIR0=0xXFF; // set port 2 byte 0 to output
while (1) {
if ((FIOOPINO&Ox01)==1){ // bit test port 0 pin 0 (mbed pin 9)
a=0x01; // this reverses the order of LED flashing
b=0x02; // based on the switch position

}

else {

The Pin Select Register

The PINSEL register can allocate each pin to one of four possibilities. An
example of part of one register, PINSEL1, is shown. This controls the upper half

Pin function select register 1 (PINSEL1 - address 0x4002 C004) bit

of Port 0.
Table 81.

description
PINSEL1 Pin name Function when

00

1:0 P0D.16 GPIO Port 0.16
3:2 PO.17 GFIO Port 0.17
54 P0.18 GPIO Port 0.18
76 Po.19ll GPIO Port 0.19
9:8 Po.201 GPIO Port 0.20
11:10 P0.2101 GPIO Port 0.21
13:12 PD.22 GPIO Port 0.22
15:14 P0.23l1 GPIO Port 0.23
17:16 P0.24[11 GPIO Port 0.24
19:18 P0.25 GPIO Port 0.25
21:20 P0D.26 GPIO Port 0.26
2322 P0.270I2 GPIO Port 0.27
2524 Po.28lld GPIO Port 0.28
2726 P0.29 GPIO Port 0.29
29:28 P0.30 GPIO Port 0.30
31:30 - Reserved

Function
when 01

RXD1
CTS1
DCD1
DSR1
DTR1
RI1

RTS1
ADO.O
ADO 1
ADO.2
ADO.3

SDAO
SCLO

USB_D+
USB_D-

Reserved

Function
when 10

SSELD
MISOO0
MOSIOD
Reserved
Reserved
Reserved

Reserved

I2S5RX_CLK
I2SRX_WS
I25RX_SDA

AOUT

USB_SDA
USB_SCL

Reserved
Reserved

Reserved

Function
when 11

SSEL
MISO
MOSI
SDAT
SCL1
RD1
TD1
CAP3.0
CAP3.1
TXD3
RXD3

Feserved
Reserved

Reserved
Reserved

Reserved

Reset
value

00
00
00
00
00
00
00
00
00
00
00

00
00

00
00
00

(From LPC17xxx
User Manual Rev.
3.1, UM10360)

The Pin Mode Register

As an example, PINMODEDO is shown. This controls the input characteristics of the
lower half of Port 0. The pattern is the same for every pin, so there’s no need for
repetition. Pull-up and pull-down resistors can be enabled. The repeater mode is a
facility which enables pull-up resistor when the input is a Logic 1, and pull-down if
it's low. If the external circuit changes so that the input is no longer driven, then the
input will hold its most recent value.

Table 88. Pin Mode select register 0 (PINMODEDO - address 0x4002 C040) bit description

PINMODEO Symbol Value Description Reset
value
1:0 P0.00MODE Port O pin 0 on-chip pull-up/down resistor control. 00
00 P0.0 pin has a pull-up resistor enabled.
01 P0.0 pin has repeater mode enabled.
10 P0.0 pin has neither pull-up nor pull-down.

11
3:2 P0.01TMODE

P0.0 has a pull-down resistor enabled.
Port O pin 1 control, see PO.OOMODE. 00

Power Control Registers

To conserve power, it is possible to turn off power and clock to many of the
LPC1768 peripherals. This power management is controlled by the PCONP
register, seen in part here. Where a bit is set to 1, the peripheral is enabled.

Table 46. Power Control for Peripherals register (PCONP - address 0x400F C0C4) bit

description

Bit Symbol Description Reset
value

0 - Reserved. NA

1 PCTIMO Timer/Counter O power/clock control bit. 1

2 PCTIMA1 Timer/Counter 1 power/clock control bit. 1

3 PCUARTO UARTO power/clock control bit. 1

4 PCUART1 UART1 power/clock control bit. 1

5 - Reserved. NA

6 PCPWM1 PWM1 power/clock control bit. 1

7 PCI2CO The 12C0 interface power/clock control bit. 1

8 PCSPI The SPI interface power/clock control bit. 1

9 PCRTC The RTC power/clock control bit. 1

10 PCSSP1 The SSP 1 interface power/clock control bit. 1

11 - Reserved. NA

12 PCADC A/D converter (ADC) power/clock control bit. 0

Note: Clear the PDN bit in the ADOCR before clearing this bit, and set

this bit before setting PDN.

Clock Select Registers

Some control is possible over the peripheral’s clock frequency, using the
PCLKSEL registers. This will control the peripheral’'s speed of operation and
hence its power consumption. Peripheral clocks are taken from the clock which
drives the CPU, called CCLK. For the mbed, CCLK runs at 96 MHz. Partial
details of PCLKSELO are shown. Two bits are used per peripheral to control the

clock frequency to each. The four possible combinations are also shown.
Table 40. Peripheral Clock Selection register 0 (PCLKSELDO - address 0x400F C1AS8) bit

description
Bit Symbol Description Reset
value
1:0 PCLK_WDT Peripheral clock selection for WDT. 00
3:2 PCLK_TIMERO Peripheral clock selection for TIMERO. 00
54 PCLK_TIMER1 Peripheral clock selection for TIMER1. 00
76 PCLK_UARTO Peripheral clock selection for UARTO. 00
9:8 PCLK_
11:10 - Table 42. Peripheral Clock Selection register bit values
1312 PCLK_ PCLKSELO and PCLKSEL1 Function Reset
1514 PCLK individual peripheral’s clock value
1716 PCLK_ select options
19:18 00 PCLK_peripheral = CCLK/4 00
2120 PCLK_ 01 PCLK_peripheral = CCLK
2322 PCLK_ 10 PCLK_peripheral = CCLK/2
2594 PCLK 11 PCLK._pe_ripheraI =rCCLKf8, except for CAN1, CAN2, and
- CAN filtering when “11” selects = CCLK/6.
27:26 PCLK_
29:28 PCLK_ ,
31:30 PCLK_ACF Peripheral clock selection for CAN acceptance filtering [l 00

[1] PCLK_CAN1 and PCLK_CAN2 must have the same PCLK divide value when the CAN function is used.

Using the DAC

The LPC1768 DAC has a set of control registers.
DAC power is always enabled, so there is no
need to consider the PCONP register.

The only pin that the DAC output is available on is
Port 0 pin 26, so this must be allocated through
PINSEL1 (where DAC output is labelled AOUT).
This pin is connected to mbed pin 18.

D
(n-bit Digital
input)

C Voltage Reference

Digital to
Analog

+

Converter -

)

Control Lines

119
(Analog
Output)

The only register specific to the DAC that we use is the DACR register, shown
here. On the LPC1768 the reference voltage is applied between terminals

labelled Vreep and Ve these are connected to 3.3 V and 0 V respectively.

Table 540: D/A Converter Register (DACR - address 0x4008 C000) bit description

Bit Symbol Value Description

5:0 - Reserved, user software should not write cnes to reserved bits. The value read from a

reserved bit is not defined.
15:6 VALUE

the AQUT pln (Wlth respect to VSSA) is VALUE x ((VREFP - VREFN)” 024) + VREFN-

16 BIASI] 0
a maximum update rate of 1 MHz.

1 The settling time of the DAC is 2.5 us and the maximum current is 350 pA. This allows a

maximum update rate of 400 kHz.

3117 -
reserved bit is not defined.

Reserved, user software should not write cnes to reserved bits. The value read from a

Reset
Value

NA

After the selected settling time after this field is written with a new VALUE, the voltage on 0

The settling time of the DAC is 1 us max, and the maximum current is 700 pA. This allows 0

NA

[1] The settling times noted in the description of the BIAS bit are valid for a capacitance load on the AOUT pin
not exceeding 100 pF. A load impedance value greater than that value will cause settling time longer than
the specified time. One or more graph(s) of load impedance vs. settling time will be included in the final data

sheet.

A DAC Application

Program Example 14.4 replicates the simple sawtooth waveform, as first
achieved in Chapter 4. An integer variable, dac_value, is repeatedly
incremented and transferred to the DAC input, in register DACR. It has to be
shifted left 6 times, to place it in the correct bits of the DACR register.

/* Program Example 14.4: Sawtooth waveform on DAC output. View on oscilloscope. Port
0.26 is used for DAC output, i.e. mbed Pin 18

*/
// function prototype
void delay(void) ;
// variable declarations
int dac value; //the value to be output

//define addresses of control registers, as pointers to volatile data
#define DACR (*(volatile unsigned long *) (0x4008C000))
#define PINSEL1 (*(volatile unsigned long *) (0x4002C004))

int main () {
PINSEL1=0x00200000; //set bits 21-20 to 10 to enable analog out on P0.26
while (1) {
for (dac _value=0;dac value<l023;dac value=dac value+l) {
DACR= (dac_value<<o6) ;
delay () ;
}
}
}

void delay (void) //delay function.
//program continues

Using the ADC

Controlling the ADC through its registers includes selecting or applying the
voltage reference, clock speed, input channel, starting a conversion, detecting a
completion, and reading the output data. The LPC1768 has a number of
registers which control its ADC. Only two are applied here, the ADC control
register, ADCR, and the Global Data Register, ADGDR. As the ADC is switched
off on power-up, it needs to be enabled through bit 12 in the PCONP register.

External o Internal to Microcontroller
Microcontroller

: Clock input
| ADC
I Multiplexer Converts its
Transducer | Selects one input Analog Input to Voltage
Generates signal | channel Digital Output Reference
L

O 4 .
s Analog input
| © Q\c to ADC

9
O—[:]_ ; O Digital
| Qutput
| Start
| TIHDUtSEECt Conversion T l CPU
: Conversion Control
1

Complete

The ADC Control
Register

Table 532: A/D Control Register (ADOCR - address 0x4003 4000) bit description

Bit Symbol Value Description

7:0 SEL

15:8 CLKDIV

16 BURST 1

2017 -

21 PDN 1

23:22 -

26:24 START

000
001
010
011

100

101

110

m

27 EDGE

31:28 -

Selects which of the ADO0.7:0 pins is (are) to be sampled and converted. For ADO, bit 0
selects Pin ADO.0, and bit 7 selects pin ADO.7. In software-controlled mode, only one of
these bits should be 1. In hardware scan mode, any value containing 1 to 8 ones is
allowed. All zerces is equivalent to 0x01.

The APB clock (PCLK_ADCDO) is divided by (this value plus one) to produce the clock for
the A/D converter, which should be less than or equal to 13 MHz. Typically, software
should program the smallest value in this field that yields a clock of 13 MHz or slightly
less, but in certain cases (such as a high-impedance analog source) a slower clock may
be desirable.

The AD converter does repeated conversions at up to 200 kHz, scanning (if necessary)
through the pins selected by bits set to ones in the SEL field. The first conversion after the
start corresponds to the least-significant 1 in the SEL field, then higher numbered 1-bits
(pins) if applicable. Repeated conversions can be terminated by clearing this bit, but the
conversion that’s in progress when this bit is cleared will be completed.

Remark: START bits must be 000 when BURST = 1 or conversions will not start. If
BURST is set to 1, the ADGINTEN bit in the ADOINTEN register (Table 534) must be set
to 0.

Conversions are software controlled and require 65 clocks.

Reserved, user software should not write ones to reserved bits. The value read from a
reserved bit is not defined.

The A/D converter is operational.
The A/D converter is in power-down mode.

Reserved, user software should not write ones to reserved bits. The value read from a
reserved bit is not defined.

When the BURST bit is 0, these bits control whether and when an A/D conversion is
started:

No start (this value should be used when clearing PDN to 0).
Start conversion now.
Start conversion when the edge selected by bit 27 occurs on the P2.10 / EINTO / NMI pin.

Start conversion when the edge selected by bit 27 occurs on the P1.27 / CLKOUT /
USB_OVRCRn / CAPO.1 pin.

Start conversion when the edge selected by bit 27 occurs on MATO.1. Note that this does
not require that the MATO.1 function appear on a device pin.

Start conversion when the edge selected by bit 27 occurs on MATO0.3. Note that it is not
possible to cause the MATOQ.3 function to appear on a device pin.

Start conversion when the edge selected by bit 27 occurs on MAT1.0. Note that this does
not require that the MAT 1.0 function appear on a device pin.

Start conversion when the edge selected by bit 27 occurs on MAT1.1. Note that this does
not require that the MAT1.1 function appear on a device pin.

This bit is significant only when the START field contains 010-111. In these cases:
Start conversion on a falling edge on the selected CAP/MAT signal.
Start conversion on a rising edge on the selected CAP/MAT signal.

Reserved, user software should not write ones to reserved bits. The value read from a
reserved bit is not defined.

Reset
value

0x01

NA

NA

NA

The ADC Global Data Register

Table 533: A/D Global Data Register (ADOGDR - address 0x4003 4004) bit description

Bit

3:0

154

23:16

26:24

29:27

30

31

Symbol

RESULT

CHN

OVERRUN

DONE

Description

Reserved, user software should not write ones to reserved bits. The value read from
a reserved bit is not defined.

When DONE is 1, this field contains a binary fraction representing the voltage on
the ADO[n] pin selected by the SEL field, as it falls within the range of Vrgep t0
VRern. Zero in the field indicates that the voltage on the input pin was less than,
equal to, or close to that on Vgegn, While OXFFF indicates that the voltage on the
input was close to, equal to, or greater than that on Vgggp.

Reserved, user software should not write ones to reserved bits. The value read from
a reserved bit is not defined.

These bits contain the channel from which the RESULT bits were converted (e.g.
000 identifies channel 0, 001 channel 1...).

Reserved, user software should not write ones to reserved bits. The value read from
a reserved bit is not defined.

This bit is 1 in burst mode if the results of one or more conversions was (were) lost
and overwritten before the conversion that produced the result in the RESULT bits.
This bit is cleared by reading this register.

This bit is set to 1 when an A/D conversion completes. It is cleared when this
register is read and when the ADCR is written. If the ADCR is written while a
conversion is still in progress, this bit is set and a new conversion is started.

Reset
value
NA

NA

NA

NA

NA

An ADC Bargraph Application (initialisation)

/* Program Example 14.5: A bar graph meter for ADC input, using control registers to
set up ADC and digital I/O

*/
// variable declarations
char ADC channel=1; // ADC channel 1
int ADCdata; //this will hold the result of the conversion
int DigOutData=0; //a buffer for the output display pattern

// function prototype
void delay(void) ;

//define addresses of control registers, as pointers to volatile data
//(i.e. the memory contents)

#define PINSELL (*(volatile unsigned long *) (0x4002C004))
#define PCONP (*(volatile unsigned long *) (0x400FC0C4))
#define ADOCR (*(volatile unsigned long *) (0x40034000))
#define ADOGDR (*(volatile unsigned long *) (0x40034004))
#define FIO2DIRO (*(volatile unsigned char *) (0x2009C040))
#define FIO2PINO (*(volatile unsigned char *) (0x2009C054))

int main () {
FIO2DIR0=0xFF;// set lower byte of Port 2 to output, this drives bar graph

//initialise the ADC
PINSEL1=0x00010000; //set bits 17-16 to 01 to enable ADO.l1 (mbed pin 16)

PCONP |= (1 << 12); // enable ADC clock

ADOCR = (1 << ADC channel) // select channel 1
| (4 << 8) // Divide incoming clock by (4+1), giving 4.8MHz
| (0 << 16) // BURST = 0, conversions under software control
| (1 << 21) // PDN = 1, enables power
| (1 << 24); // START = 1, start A/D conversion now

An ADC Bargraph Application (main while(1) loop)

while (1) { // infinite loop

ADOCR = ADOCR | 0x01000000; //start conversion by setting bit 24 to 1,
//by ORing

// wait for it to finish by polling the ADC DONE bit

while ((ADOGDR & 0x80000000) == 0) { //test DONE bit, wait till it’s 1

}

ADCdata = ADOGDR; // get the data from ADOGDR

ADOCR &= OxF8FFFFFF; //stop ADC by setting START bits to zero

// Shift data 4 bits to right justify, and 2 more to give 10-bit ADC

// value - this gives convenient range of Jjust over one thousand.

ADCdata= (ADCdata>>6) &0x03FF; //and mask

DigOutData=0x00; //clear the output buffer

//display the data
if (ADCdata>200)

DigOutData= (DigOutbata|0x01); //set the 1lsb by ORing with 1
if (ADCdata>400)

DigOutData= (DigOutData|0x02); //set the next lsb by ORing with 1
if (ADCdata>600)

DigOutData= (DigOutData|0x04) ;
if (ADCdata>800)

DigOutData= (DigOutData|0x08) ;
if (ADCdata>1000)

DigOutData= (DigOutData|0x10) ;

FIO2PINO = DigOutData; // set port 2 to Digoutdata
delay ()’ // pause
}
}
void delay(void) { //delay function.

//program continues

Changing ADC Conversion Speed

One of the limitations of the mbed ADC library is the slow speed of conversion.
This can be varied by adjusting the ADC clock speed. Program Example 14.6
replicates Program Example 5.5, and combines ADC, DAC and digital 1/O,
illustrating how these can be used together.

/* Program Example 14.6: Explore ADC conversion times, programming control registers
directly. ADC value 1is transferred to DAC, while an output pin is strobed to indicate
conversion duration. Observe on oscilloscope

*/

while (1) { // infinite loop
// start A/D conversion by modifying bits in the ADOCR register
ADOCR &= (ADOCR & OxXFFFFFF0O0) ;

FIO2PINO |= 0x01; // OR bit 0 with 1 to set pin high
ADOCR |= (1 << ADC channel) | (1 << 24);

// wait for it to finish by polling the ADC DONE bit

while ((ADOGDR & 0x80000000) == 0) {

}

FIO2PINO &= ~0x01; // AND bit 0 with 0 to set pin low
ADCdata = ADOGDR; // get the data from ADOGDR

ADOCR &= OxF8FFFFFF; //stop ADC by setting START bits to zero

// shift data 4 bits to right justify, and 2 more to give 10-bit ADC value
ADCdata= (ADCdata>>6) &0x03FF; //and mask
DACR= (ADCdata<<6) ; //could be merged with previous line,
// but separated for clarity
//delay () ; //insert delay if wished

}

A Conclusion on Using the Control Registers

 We have explored the use of the LPC1768 control registers, in connection
with use of the digital I/O, ADC and DAC peripherals.

« We have demonstrated how these registers allow the peripherals to be
controlled directly, without using the mbed libraries. This has allowed
greater flexibility of use of the peripherals, at the cost of getting into the
tiny detail of the registers, and programming at the level of the bits that
make them up.

* Ordinarily we probably wouldn’t want to program like this; it's time-
consuming, inconvenient and error-prone. However if we need a
configuration or setting not offered by the mbed libraries, this approach
can be a way forward.

« While we've only worked in this way in connection with three of the
peripherals, it's possible to do it with any of them. The three used are
some of the simpler; others require even more attention to detail.

Chapter Review

* In this chapter we have recognised a different way of controlling the
mbed peripherals. It demands a much deeper understanding of the
mbed microcontroller, but allows for much greater flexibility.

« There are registers which relate just to one peripheral, and others which
relate to microcontroller performance as a whole.

 We have begun to implement features that are not currently available in
the mbed library, for example in the change of the ADC conversion
speed.

« The chapter only introduces a small range of the control registers which
are used by the LPC1768. However it should have given you the
confidence to look up and begin to apply any that you need.

