
tw rev. 03.11.16

Chapter 14: Letting go
of the mbed Libraries

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows:

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.

www.embedded-knowhow.co.uk

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/

The mbed library contains many useful functions, which allow us to write simple

and effective code. This seems a good thing, but it is also sometimes limiting.

What if we want to use a peripheral in a way not allowed by any of the

functions? Therefore it is useful to understand how peripherals can be

configured by direct access to the microcontroller’s registers. In turn, this leads

to a deeper insight into some aspects of how a microcontroller works. As a by-

product, and because we will be working at the bit and byte level, this study

develops further skills in C programming.

Letting Go of the mbed Libraries

Control Register Concepts

How does the CPU, running its program, communicate with all the peripherals
on the microcontroller?

Control Register Concepts

Each microcontroller peripheral has one or more system control registers which

act as the doorway between the peripheral and the CPU.

To the CPU, these

registers look just like

memory locations, and

each has its own address

in the memory map.

Each of the bits in the

register is wired across to

the peripheral. They might

carry control or status

information, or provide a

path for data flow.

The microcontroller

peripherals also usually

generate interrupts, for

example to flag when an

ADC conversion is
complete.

mbed Digital I/O Control Registers

Using the control registers, it is possible to set each port pin as an input or as an

output. Each port has a 32-bit register whose bits control the direction of each of

its pins, called the FIODIR registers. There are also single-byte versions.

A second set of registers, called FIOPIN, hold the data value of the

microcontroller’s pins, whether they have been set as input or output.

Register
Name

Register Function Register
Address

FIOnDIR Sets the data direction of each pin in Port n, where n takes value 0 to 4. A port pin
is set to output when its bit is set to 1, and as input when it is set to 0. Accessible
as word. Reset value = 0, i.e. all bits are set to input on reset.

-

FIO0DIR
FIO2DIR

Example of above for Port 0.
Example of above for Port 2.

0x2009C000
0x2009C040

FIOnDIRp Sets the data direction of each pin in byte p of Port n, where p takes value 0 to 3.
A port pin is set to output when its bit is set to 1. Accessible as byte.

 -

FIO0DIR0
FIO0DIR1
FIO2DIR0

Example of above, Port 0 byte 0.
Example of above, Port 0 byte 1.
Example of above, Port 2 byte 0.

0x2009C000
0x2009C001
0x2009C040

FIO0PIN
FIO2PIN

Sets the data value of each bit in Port 0 or 2. Accessible as word. Reset value = 0. 0x2009C014
0x2009C054

FIO0PIN0
FIO2PIN0

Sets the data value of each bit in least significant byte of Port 0 or 2. Accessible as
byte. Reset value = 0.

0x2009C014
0x2009C054

Example Digital I/O Control Registers

Connecting LPC1768 pins to mbed pins

Most of the mbed pins connect directly to the LPC1768 microcontroller. These

connections can be seen in the mbed circuit diagram, and are summarised

below. Against each mbed pin which connects directly is shown the LPC1768 pin

number, its port bit id, and any further function applied by the mbed. Any function

not used by the mbed is not shown (but can be found in the data sheet).

75(P2.0/PWM1.1)

46(P0.0/TXD3/SDA1)
47(P0.1/RXD3/SCL1)

81(P0.4/CAN_RX2)

79(P0.6)

78(P0.7/SCK1)
77(P0.8/MISO1)

76(P0.9/MOSI1)

48(P0.10/TXD2/SDA2)
49(P0.11/RXD2/SCL2)

62(P0.15/TXD1/SCK)

63(P0.16/RXD1)

61(P0.17/MISO)
60(P0.18/MOSI)

6(P0.26/AD0.3/AOUT)
21(P1.30/AD0.4)

20(P1.31/AD0.5)

74(P2.1/PWM1.2)

73(P2.2/PWM1.3)

70(P2.3/PWM1.4)
69(P2.4/PWM1.5)
68(P2.5/PWM1.6)

80(P0.5/CAN_TX2)

7(P0.25/AD0.2)

8(P0.24/AD0.1)
9(P0.23/AD0.0)

LED1: P1.18 LED2: P1.20 LED3: P1.21 LED3: P1.23

A Digital Output Application

/*Program Example 14.1: Sets up a digital output pin using control registers, and

flashes an led.

 */

// function prototypes

void delay(void);

//Define addresses of digital i/o control registers, as pointers to volatile data

#define FIO2DIR0 (*(volatile unsigned char *)(0x2009C040))

#define FIO2PIN0 (*(volatile unsigned char *)(0x2009C054))

int main() {

 FIO2DIR0=0xFF; // set port 2, lowest byte to output

 while(1) {

 FIO2PIN0 |= 0x01; // OR bit 0 with 1 to set pin high

 delay();

 FIO2PIN0 &= ~0x01; // AND bit 0 with 0 to set pin low

 delay();

 }

}

//delay function

void delay(void){

 int j; //loop variable j

 for (j=0;j<1000000;j++) {

 j++;

 j--; //waste time

 }

}

This program replicates the opening LED flashing program, without using mbed

libraries. It switches port 2 bit 0 (and hence mbed pin 26) high and low.

Digital Inputs

/* Program Example 14.3: Uses digital input and output using control registers, and

flashes an LED. LEDS connect to mbed pins 25 and 26. Switch input to pin 9.

 */

// function prototypes

void delay(void);

//Define Digital I/O registers

#define FIO0DIR0 (*(volatile unsigned char *)(0x2009C000))

#define FIO0PIN0 (*(volatile unsigned char *)(0x2009C014))

#define FIO2DIR0 (*(volatile unsigned char *)(0x2009C040))

#define FIO2PIN0 (*(volatile unsigned char *)(0x2009C054))

//some variables

char a;

char b;

char i;

int main() {

 FIO0DIR0=0x00; // set all bits of port 0 byte 0 to input

 FIO2DIR0=0xFF; // set port 2 byte 0 to output

 while(1) {

 if ((FIO0PIN0&0x01)==1){ // bit test port 0 pin 0 (mbed pin 9)

 a=0x01; // this reverses the order of LED flashing

 b=0x02; // based on the switch position

 }

 else {

...

...

We can create digital inputs simply by setting a port bit to input, using the

correct bit in an FIODIR register. Program Example 14.3 develops the previous

example, by including a digital input from a switch.

The Pin Select Register

The PINSEL register can allocate each pin to one of four possibilities. An

example of part of one register, PINSEL1, is shown. This controls the upper half

of Port 0.

(From LPC17xxx
User Manual Rev.
3.1, UM10360)

As an example, PINMODE0 is shown. This controls the input characteristics of the

lower half of Port 0. The pattern is the same for every pin, so there’s no need for

repetition. Pull-up and pull-down resistors can be enabled. The repeater mode is a

facility which enables pull-up resistor when the input is a Logic 1, and pull-down if

it’s low. If the external circuit changes so that the input is no longer driven, then the

input will hold its most recent value.

The Pin Mode Register

Power Control Registers

To conserve power, it is possible to turn off power and clock to many of the

LPC1768 peripherals. This power management is controlled by the PCONP

register, seen in part here. Where a bit is set to 1, the peripheral is enabled.

Clock Select Registers

Some control is possible over the peripheral’s clock frequency, using the

PCLKSEL registers. This will control the peripheral’s speed of operation and

hence its power consumption. Peripheral clocks are taken from the clock which

drives the CPU, called CCLK. For the mbed, CCLK runs at 96 MHz. Partial

details of PCLKSEL0 are shown. Two bits are used per peripheral to control the

clock frequency to each. The four possible combinations are also shown.

Using the DAC

The LPC1768 DAC has a set of control registers.

DAC power is always enabled, so there is no

need to consider the PCONP register.

The only pin that the DAC output is available on is

Port 0 pin 26, so this must be allocated through

PINSEL1 (where DAC output is labelled AOUT).

This pin is connected to mbed pin 18.

The only register specific to the DAC that we use is the DACR register, shown

here. On the LPC1768 the reference voltage is applied between terminals
labelled VREFP and VREFN; these are connected to 3.3 V and 0 V respectively.

A DAC Application

/* Program Example 14.4: Sawtooth waveform on DAC output. View on oscilloscope. Port

0.26 is used for DAC output, i.e. mbed Pin 18

 */

// function prototype

void delay(void);

// variable declarations

int dac_value; //the value to be output

//define addresses of control registers, as pointers to volatile data

#define DACR (*(volatile unsigned long *)(0x4008C000))

#define PINSEL1 (*(volatile unsigned long *)(0x4002C004))

int main(){

 PINSEL1=0x00200000; //set bits 21-20 to 10 to enable analog out on P0.26

 while(1){

 for (dac_value=0;dac_value<1023;dac_value=dac_value+1){

 DACR=(dac_value<<6);

 delay();

 }

 }

 }

void delay(void) //delay function.

//program continues

Program Example 14.4 replicates the simple sawtooth waveform, as first

achieved in Chapter 4. An integer variable, dac_value, is repeatedly

incremented and transferred to the DAC input, in register DACR. It has to be

shifted left 6 times, to place it in the correct bits of the DACR register.

Using the ADC

Controlling the ADC through its registers includes selecting or applying the

voltage reference, clock speed, input channel, starting a conversion, detecting a

completion, and reading the output data. The LPC1768 has a number of

registers which control its ADC. Only two are applied here, the ADC control

register, ADCR, and the Global Data Register, ADGDR. As the ADC is switched

off on power-up, it needs to be enabled through bit 12 in the PCONP register.

The ADC Control

Register

The ADC Global Data Register

An ADC Bargraph Application (initialisation)

/* Program Example 14.5: A bar graph meter for ADC input, using control registers to

set up ADC and digital I/O

 */

// variable declarations

char ADC_channel=1; // ADC channel 1

int ADCdata; //this will hold the result of the conversion

int DigOutData=0; //a buffer for the output display pattern

// function prototype

void delay(void);

//define addresses of control registers, as pointers to volatile data

//(i.e. the memory contents)

#define PINSEL1 (*(volatile unsigned long *)(0x4002C004))

#define PCONP (*(volatile unsigned long *)(0x400FC0C4))

#define AD0CR (*(volatile unsigned long *)(0x40034000))

#define AD0GDR (*(volatile unsigned long *)(0x40034004))

#define FIO2DIR0 (*(volatile unsigned char *)(0x2009C040))

#define FIO2PIN0 (*(volatile unsigned char *)(0x2009C054))

int main() {

 FIO2DIR0=0xFF;// set lower byte of Port 2 to output, this drives bar graph

//initialise the ADC

 PINSEL1=0x00010000; //set bits 17-16 to 01 to enable AD0.1 (mbed pin 16)

 PCONP |= (1 << 12); // enable ADC clock

 AD0CR = (1 << ADC_channel) // select channel 1

 | (4 << 8) // Divide incoming clock by (4+1), giving 4.8MHz

 | (0 << 16) // BURST = 0, conversions under software control

 | (1 << 21) // PDN = 1, enables power

 | (1 << 24); // START = 1, start A/D conversion now

 ...

while(1) { // infinite loop

 AD0CR = AD0CR | 0x01000000; //start conversion by setting bit 24 to 1,

 //by ORing

 // wait for it to finish by polling the ADC DONE bit

 while ((AD0GDR & 0x80000000) == 0) { //test DONE bit, wait till it’s 1

 }

 ADCdata = AD0GDR; // get the data from AD0GDR

 AD0CR &= 0xF8FFFFFF; //stop ADC by setting START bits to zero

 // Shift data 4 bits to right justify, and 2 more to give 10-bit ADC

 // value - this gives convenient range of just over one thousand.

 ADCdata=(ADCdata>>6)&0x03FF; //and mask

 DigOutData=0x00; //clear the output buffer

 //display the data

 if (ADCdata>200)

 DigOutData=(DigOutData|0x01); //set the lsb by ORing with 1

 if (ADCdata>400)

 DigOutData=(DigOutData|0x02); //set the next lsb by ORing with 1

 if (ADCdata>600)

 DigOutData=(DigOutData|0x04);

 if (ADCdata>800)

 DigOutData=(DigOutData|0x08);

 if (ADCdata>1000)

 DigOutData=(DigOutData|0x10);

 FIO2PIN0 = DigOutData; // set port 2 to Digoutdata

 delay(); // pause

 }

}

 void delay(void){ //delay function.

//program continues

An ADC Bargraph Application (main while(1) loop)

Changing ADC Conversion Speed

One of the limitations of the mbed ADC library is the slow speed of conversion.

This can be varied by adjusting the ADC clock speed. Program Example 14.6

replicates Program Example 5.5, and combines ADC, DAC and digital I/O,

illustrating how these can be used together.

/* Program Example 14.6: Explore ADC conversion times, programming control registers

directly. ADC value is transferred to DAC, while an output pin is strobed to indicate

conversion duration. Observe on oscilloscope

 */

….

….

 while(1){ // infinite loop

 // start A/D conversion by modifying bits in the AD0CR register

 AD0CR &= (AD0CR & 0xFFFFFF00);

 FIO2PIN0 |= 0x01; // OR bit 0 with 1 to set pin high

 AD0CR |= (1 << ADC_channel) | (1 << 24);

 // wait for it to finish by polling the ADC DONE bit

 while((AD0GDR & 0x80000000) == 0) {

 }

 FIO2PIN0 &= ~0x01; // AND bit 0 with 0 to set pin low

 ADCdata = AD0GDR; // get the data from AD0GDR

 AD0CR &= 0xF8FFFFFF; //stop ADC by setting START bits to zero

 // shift data 4 bits to right justify, and 2 more to give 10-bit ADC value

 ADCdata=(ADCdata>>6)&0x03FF; //and mask

 DACR=(ADCdata<<6); //could be merged with previous line,

 // but separated for clarity

 //delay(); //insert delay if wished

 }

}

…

A Conclusion on Using the Control Registers

• We have explored the use of the LPC1768 control registers, in connection

with use of the digital I/O, ADC and DAC peripherals.

• We have demonstrated how these registers allow the peripherals to be

controlled directly, without using the mbed libraries. This has allowed

greater flexibility of use of the peripherals, at the cost of getting into the

tiny detail of the registers, and programming at the level of the bits that

make them up.

• Ordinarily we probably wouldn’t want to program like this; it’s time-

consuming, inconvenient and error-prone. However if we need a

configuration or setting not offered by the mbed libraries, this approach

can be a way forward.

• While we’ve only worked in this way in connection with three of the

peripherals, it’s possible to do it with any of them. The three used are

some of the simpler; others require even more attention to detail.

Chapter Review

• In this chapter we have recognised a different way of controlling the

mbed peripherals. It demands a much deeper understanding of the

mbed microcontroller, but allows for much greater flexibility.

• There are registers which relate just to one peripheral, and others which

relate to microcontroller performance as a whole.

• We have begun to implement features that are not currently available in

the mbed library, for example in the change of the ADC conversion

speed.

• The chapter only introduces a small range of the control registers which

are used by the LPC1768. However it should have given you the

confidence to look up and begin to apply any that you need.

