
tw rev. 17.11.16

Chapter 15: Hardware Insights: Clocks,

Resets and Power Supply

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows:

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.

www.embedded-knowhow.co.uk

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/

This figure shows the internal

power distribution of the LPC1768.

Locate these:

• two regular power supply

inputs, labelled VDD(3V3) and

VDDREG(3V3) ;

• VBAT, which can be connected to

an external battery to sustain

only the Real Time Clock and

backup registers;

• Supplies to ADC and DAC, VDDA

and VSSA ;

• A voltage reference for ADC

and DAC, VREFP and VREFN.

Power Supply and the LPC1768

Supply Voltage Requirements for the LPC1768

Power Supply and the LPC1768

The supply voltage requirements of the LPC1768 are shown. All are

centred around 3.3 V, with VBAT having the lowest permissible value at

2.1 V. All can go up to 3.6 V, except for the ADC positive reference

voltage, which must not exceed the ADC supply voltage.

Power Supply and the mbed

The Figure shows the LPC1768 power and clock

connections within the mbed. Each connection shows

the microcontroller pin number, and the name of the

signal.

A complex integrated circuit tends to have more than

one ground connection, and similar multiple power

supply connections. This is because the

interconnecting wires inside the IC are so very thin

that they can have significant resistance.

There are six ground connections, labelled VSS.

 There are four VDD(3V3) connections and two for

VDDREG(3V3). The mbed designers don’t differentiate

between these two, they just join them together.

The VBAT connection is kept separate, and can be

supplied via pin 3, VB, of the mbed.

The VDD supply is smoothed by the distributed

capacitors C15 – C17 and C20.

LPC1768 internal power/ clock

connections on the mbed

R

C

supply voltage

oscillator "signal"

oscillator "signal"

optional power-

limiting resistor

crystal or
ceramic

Clock Sources and their Selection

An essential part of the microcontroller system is the clock oscillator, a

continuous square wave which drives forward most microcontroller action. It is

also the basis of many time measurement or generation activities.

 Clock oscillators can be based on resistor-capacitor (R-C) networks, or ceramic

or crystal resonators; the designer should be aware of their relative advantages.

A popular R-C oscillator circuit is shown below left. The R-C circuit is the

cheapest form of clock oscillator available and is widely used.

 A quartz crystal oscillator is based on a very thin slice of crystal. This is

piezoelectric. If electrical terminals are deposited on opposite surfaces of the

crystal, then due to its piezoelectric property vibration can be induced and

sustained electrically. A suitable circuit is shown below right.

Oscillator circuits

LPC1768 Clock Oscillators and the mbed Implementation

The Figure shows how clock sources within the LPC1768 are distributed.

 There are three sources, seen to the left of the diagram:

• the main oscillator (an external crystal), which can operate between 1 and 25 MHz. It

can also act in slave mode - an external clock signal can be connected via a

capacitor to the XTAL1 pin;

• the internal R-C oscillator, running at a nominal frequency of 4 MHz;

• the RTC oscillator - another crystal, but of low frequency.

The LPC1768

clock circuit

LPC1768 Clock Configuration register CCLKCFG

Adjusting the Clock Configuration Register

The CPU Clock Divider block, seen in the previous Figure, is controlled by the

Clock Configuration register CCLKCFG, seen below.

The frequency of pllclk is divided by the number held in the lower 7 bits of

this register, plus one; this produces cclk.

Adjusting the Clock Configuration Register

This Program Example

approximately replicates the

original “blinky” program,

using its own delay()

function. It starts by resetting

the value of CCLKCFG, so

the program then runs with a

changed clock frequency.

/*Program Example 15.1 Adjusts clock divider through register CCLKCFG,

with trial blinky action */

#include "mbed.h" //keep this, as we are using DigitalOut

DigitalOut myled(LED1);

#define CCLKCFG (*(volatile unsigned char *)(0x400FC104))

// function prototypes

void delay(void);

int main() {

 CCLKCFG=0x00000005; // divider divides by this number plus 1

 while(1) {

 myled = 1;

 delay();

 myled = 0;

 delay();

 }

}

void delay(void){ //delay function.

 int j; //loop variable j

 for (j=0;j<5000000;j++) {

 j++;

 j--; //waste time

 }

}

Adjusting the Phase Locked Loop

The phase locked loop is a circuit which can multiply frequencies.

The main PLL of the LPC1768, PLL0, is actually made up of a divider followed

by the PLL. Hence it can divide frequencies as well as multiply them.

Different combinations of multiply and divide give a huge range of possible

output frequencies, which can be extremely useful in some situations.

A PLL needs to “lock” to an incoming frequency. However, it only locks if

conditions are right, and it may take finite time to do this. These conditions

include the requirement that the input to PLL0 must be in the range 32 kHz to

50 MHz. It’s interesting to see therefore that the PLL can be used to multiply up

the RTC frequency if required.

Full use of the PLL0 sub-system is complex, and requires a very careful

reading of relevant sections of the LPC1768 user manual.

Name Description Access Address
PLL0CON Control Register. Holding register for updating PLL0 control bits. Values

written to this register do not take effect until a valid PLL0 feed sequence has

taken place. There are only 2 useful bits: bit 0 to enable; PLL0, bit 1 to

connect. Connection must only take place after the PLL is enabled,

configured, and locked.

Read/Write 0x400F C080

PLL0CFG Configuration Register. Holding register for updating PLL0 configuration

values. Bits 14:0 hold the value for the frequency multiplication, less one; Bits

23:16 hold the value for the pre-divider, less one. Values written to this

register do not take effect until a valid PLL0 feed sequence has taken place.

Read/Write 0x400F C084

PLL0STAT Status Register. Read-back register for PLL0 control and configuration

information. If PLL0CON or PLL0CFG have been written to, but a PLL0 feed

sequence has not yet occurred, they will not reflect the current PLL0 state.

Reading this register provides the actual values controlling PLL0, as well as

the PLL0 status. Bits 14:0 and bits 23:16 reflect the same multiply and divide

bits as in PLL0CFG. Bits 24 and 25 reflect the two useful bits of PLL0CON.

When either is zero, PLL0 is bypassed. When both are 1, PLL0 is selected.

Bit 26, PLOCK0, gives the lock status of the PLL.

Read Only 0x400F C088

PLL0FEED Feed Register. Correct use of this register enables loading of the PLL0 control

and configuration information from the PLL0CON and PLL0CFG registers into

the shadow registers that actually affect PLL0 operation. The required feed

sequence is 0xAA followed by 0x55.

Write Only 0x400F C08C

PLL0 Control Registers

The PLL is controlled by four registers, outlined in the Table. The PLL is enabled and

connected through PLL0CON, with multiply and divide values set through PLL0CFG.

The Feed Register is a safety feature which blocks accidental changes to PLL0CON and

PLL0CFG. A valid “feed sequence” is required before any update can be configured.

Once implemented, changes can be tested in PLL0STAT. This further carries the important

PLOCK0 bit, which tests whether successful lock has been achieved.

Adjusting the Phase Locked Loop

/*Program Example 15.2 Switches off PLL0, with blinky action

 */

#include "mbed.h"

DigitalOut myled(LED1);

#define CCLKCFG (*(volatile unsigned char *)(0x400FC104))

#define PLL0CON (*(volatile unsigned char *)(0x400FC080))

#define PLL0FEED (*(volatile unsigned char *)(0x400FC08C))

#define PLL0STAT (*(volatile unsigned int *)(0x400FC088))

// function prototypes

void delay(void);

int main() {

 // Disconnect PLL0

 PLL0CON &= ~(1<<1); // Clears bit 1 of PLL0CON, the Connect bit

 PLL0FEED = 0xAA; // Feed the PLL. Enables action of above line

 PLL0FEED = 0x55; //

 // Wait for PLL0 to disconnect. Wait for bit 25 to become 0.

 while ((PLL0STAT & (1<<25)) != 0x00);//Bit 25 shows connection status

 // Turn off PLL0; on completion, PLL0 is bypassed.

 //continued over…

Adjusting the Phase Locked Loop

This program illustrates PLL0 control. The main() function immediately disconnects

and turns off the PLL, “feeding” the PLL control as required. The mbed then runs

with the PLL disabled and bypassed.

 PLL0CON &= ~(1<<0); //Bit 0 of PLL0CON disables PLL

 PLL0FEED = 0xAA; // Feed the PLL. Enables action of above line

 PLL0FEED = 0x55;

 // Wait for PLL0 to shut down

 while ((PLL0STAT & (1<<24)) != 0x00);//Bit 24 shows enable status

 /****Insert Optional Extra Code Here****

 to change PLL0 settings or clock source.

 OR just continue with PLL0 disabled and bypassed*/

 //blink at the new clock frequency

 while(1) {

 myled = 1;

 delay();

 myled = 0;

 delay();

 }

}

void delay(void){ //delay function.

 int j; //loop variable j

 for (j=0;j<5000000;j++) {

 j++;

 j--; //waste time

 }

}

Adjusting the Phase Locked Loop

 // Set PLL0 multiplier

 PLL0CFG = 07; //arbitrary multiply value, divide value left at 1

 PLL0FEED = 0xAA; // Feed the PLL

 PLL0FEED = 0x55;

 // Turn on PLL0

 PLL0CON |= 1<<0;

 PLL0FEED = 0xAA; // Feed the PLL

 PLL0FEED = 0x55;

 // Wait for main PLL (PLL0) to come up

 while ((PLL0STAT & (1<<24)) == 0x00);

 // Wait for PLOCK0 to become 1

 while ((PLL0STAT & (1<<26)) == 0x00);

 // Connect to the PLL0

 PLL0CON |= 1<<1;

 PLL0FEED = 0xAA; // Feed the PLL

 PLL0FEED = 0x55;

 while ((PLL0STAT & (1<<25)) == 0x00); //Wait for PLL0 to connect

Adjusting the Phase Locked Loop

This code fragment can be inserted in the previous program to introduce clock

frequency changes with PLL0.

Selecting the Clock Source

If the clock source is to be changed, through the input multiplexer, it must be done

with PLL0 shut down. This change is controlled by the Clock Source Select

Register, CLKSRCSEL, with details shown.

Clock Source Select Register, CLKSRCSEL

Questions from the Quiz

1. Name two advantages and two disadvantages of R-C and quartz oscillators.

2. Following reset, the LPC1768 always starts running from the internal R-C

oscillator. Why is this?

3. In a certain application, the main oscillator in an LPC1768 application is

running at 18.000 MHz, the PLL multiplies by 8, and the lower 7 bits of

register CCLKCFG are set to 5. What is the frequency of cclk?

Reset

At certain times, any microcontroller needs to start its program from the

beginning. At this moment it also needs to put all of its control registers into a

known state, so that peripherals are safe and initially disabled. This “ready-

to-start” condition is called reset.

The CPU starts running its program when it leaves the reset condition.

In an advanced processor like the LPC1768, the user code is preceded by

some “boot code”, hard-wired into the processor, which undertakes

preliminary configuration.

Apart from power-up, there are other times when reset is needed, including

the possibility that the user may want to force a reset if a system locks or

crashes.

Power-on Reset

The moment that power is applied is a critical one for any embedded system.

Both the power supply and the clock oscillator take finite time to stabilise,

and in a complex system power to different parts of the circuit may stabilise

at different times.

LPC1768 internal signals during start-up

Other Sources of Reset

External reset

The LPC1768 has an external reset input. As long as this is held low, the

microcontroller is held in reset. When it is taken high, a sequence is followed

very similar to the power-on reset described above.

The mbed has a reset button. This is however connected to the interface

microcontroller. This can force a reset to the LPC1768 itself.

Watchdog timer

A common failure mode of any computer-based system is for the computer to

lock up. For most embedded systems this is unacceptable.

An uncompromising solution is the Watchdog Timer (WDT), which resets the

processor if the WDT is ever allowed to overflow. The WDT runs continuously,

counting towards its overflow value.

The programmer must ensure that this overflow doesn’t happen. This is done by

including periodic WDT resets throughout the program.

If the program crashes, then the WDT overflows, the controller resets, and the

program starts from its very beginning.

A WDT overflow causes a reset very similar to the power-on reset described

above.

Other Sources of Reset

Brownout detect

An awkward failure condition for an embedded system is when the power dips,

and then returns to normal. This is called a brownout, and is illustrated below. A

brownout won’t be detected as a full loss of power, and may not be noticed at

all. However that momentary loss of full power could cause partial system

failure.

Like many microcontrollers, the LPC1768 has a brownout detect capability,

which must be enabled by the user. It is not normally enabled in the mbed.

 Detection of brownout, when enabled, causes a reset very similar to the power-

on reset described above.

Voltage “brownouts”

How Power is Consumed in a Digital Circuit

Complementary Metal Oxide Semiconductor (CMOS) digital technology is the

basis for the mobile phone, laptop, and any other portable electronic device. To

understand how to minimise the power consumption these devices, it is useful

to have some understanding as to how CMOS consumes power.

Power consumption in a CMOS inverter (Eq. 15.1)

 (a) Idealised circuit (b) actual circuit, input going low (c) actual circuit, input going high

IT : total current taken IQ : quiescent current (due to leakage in the device)

f : switching frequency Ceq equivalent capacitance of load and “shoot through” effect

VDD : supply voltage

Manufacturer Technology Shape/

Package

Nominal Terminal

Voltage (V)

Capacity

(mAh)

Varta Silver Oxide V301,

Button

1.55 96

Varta Silver Oxide V303,

Button

1.55 160

Procell Alkaline AAA

cylinder

1.5 1175

Procell Alkaline AA cylinder 1.5 2700

Procell Alkaline PP3 9.0 550

Cells and Batteries

Cells are classified either as primary (non-rechargeable), or as secondary

(rechargeable).

They are based on a variety of metal/chemical combinations, each of which has

special characteristics in terms of energy density, whether rechargeable or not,

and other electrical characteristics.

The two most important electrical characteristics of a cell are terminal voltage and

capacity; the latter generally measured in Amp-hours (Ah), or milliamp hours

(mAh). The Table gives some examples.

Questions from the Quiz

4. A certain logic circuit is powered from 3.0 V. It has a quiescent current of 120

nA, and an “equivalent capacitance” in the circuit of 56 pF. Applying Equation

15.1, what is its current consumption when the clock frequency is 1 kHz,

1 MHz, and when it is not clocked at all?

5. An mbed is found to draw 140 mA, when powered from 4 AAA cells in series,

each of capacity 1175 mAh. Approximately how long will the cells last if they

run continuously?

8. Power consumption to a digital circuit is being carefully monitored. It is found

that connecting a long cable to a digital interface marginally increases the

power consumption, even though nothing is connected at the far end of the

cable. Why is this?

(Fig. 3.13)

Exploring mbed Power Consumption

The mbed was not designed for low power, yet it provides a good opportunity to

study power supply in an embedded system, and to explore ways of reducing

that power. It’s interesting to set up a simple current measurement circuit as

shown, and monitor current in the different examples and exercises.

LPC1768 Current Consumption

The current consumption characteristics of the LPC1768 are shown, along with the

LPC1769, which can run at a slightly higher clock frequency. The Table also refers to Sleep

and Power-down modes that we shall meet soon.

Table entries reinforce the message that clock frequency dominates current consumption.

The mbed runs with a

clock frequency of 96

MHz, with PLL

enabled. Hence we

estimate that the

LPC1768 on the mbed

takes a supply current

just under 42 mA, say

40 mA. But the values

shown are with all

peripherals disabled,

so in practice the

consumption will be

higher.

LPC1768/9 current consumption characteristics (Table 15.5)

Reducing mbed Power Consumption: Switching Unwanted

Things Off

A brief glance at the mbed block diagram reminds you how much there is in the overall

mbed circuit. All of this is continuously powered, whether you use it or not.

This program explores aspects of managing mbed power consumption. It uses the

EthernetPowerControl library file, imported from the mbed Cookbook site. The PCONP

register is used to switch on or off individual peripherals in the LPC1768 itself.

/*Program Example 15.4

Powers down certain elements of the mbed, when not in use.

 */

#include "mbed.h"

 //import next from mbed site

#include "PowerControl/EthernetPowerControl.h"

DigitalOut myled1(LED1);

DigitalOut myled4(LED4);

#define PCONP (*(volatile unsigned long *)(0x400FC0C4))

Ticker blinker;

void blink() {

 myled1=!myled1;

 myled4=!myled4;

}

 //continued over…

Switching Unwanted (mbed) Things Off

int main() {

 myled1=!myled4;

 PHY_PowerDown(); //**comment this in and out

 //Turn all peripherals OFF, except repetitive interrupt timer,

 PCONP = 0x00008000; //which is needed for Ticker

 blinker.attach(&blink, 0.0625);

 while (1) {

 wait(1);

 }

}

We saw earlier that the LPC1768 has extensive capabilities to vary the clock

frequency, e.g. through the CCLKCFG and PLL0CFG registers already shown.

This means we can trade off speed of execution with power consumption. A

program with significant computational demands will need to run fast, and will

consume more power; one with low computational demands can run slowly, and

consume less power.

It is attractive to imagine that clock speeds can be reduced at will to reduce

current consumption. While this is true in principal, take care! Many of the

peripherals depend on that clock frequency as well, along with their mbed API

libraries, for example for the setting of a serial port bit rate.

Reducing mbed Power Consumption: Manipulating the clock

frequency

LPC1768 Low Power Modes

Sleep mode: The clock to the core, including the CPU, is stopped, so program execution stops.

Peripherals can continue to function. Exit from this mode can be achieved by an enabled

Interrupt, or a Reset.

Deep Sleep mode: Here the main oscillator and PLL0 are powered down, and the output of the

internal R-C oscillator disabled, so no internal clocks are available. The internal R-C oscillator

can continue running, and can run the WDT, which can cause a wakeup. The 32 kHz RTC

continues, and can generate an interrupt. Wake-up is by Reset, by the RTC, or by any other

interrupt which can function without a clock.

Power Down mode: This is similar to Deep Sleep, but the internal R-C oscillator and flash

memory are turned off. Wake-up time is thus a little longer.

Deep Power Down mode: In this mode all power is switched off, except to the RTC. Wake-up is

only through external Reset, or from the RTC.

Aside from varying clock frequency, there are other, even more effective

techniques. These involve either switching off the clock altogether at times when

nothing needs doing, or switching it off to certain parts of a microcontroller.

The LPC1768 uses the modes summarised below, with power consumptions

given in the earlier Table.

Questions from the Quiz

7. Propose situations where each of the LPC1768 low power modes (Sleep,

Deep Sleep and so on) can be used effectively.

10. A designer wishes to estimate power consumption characteristics of a new

product based on the LPC1769, and applies the current consumption data of

Table 15.5 (see earlier slide). A 3.3 V battery is available, with capacity 1200

mAh. She anticipates a behaviour whereby the processor will need to wake

once per minute to perform a task, made up of two parts. In the first part, the

processor must run with a clock speed of 120 MHz, PLL enabled for 200 ms. It

then runs at 12 MHz, PLL disabled, for 400 ms. For the rest of the time it is in

power-down mode. For the purposes of this question, the current taken by the

rest of the circuit can be assumed to be negligible.

a. Estimate the average current drawn from the battery.

b. Estimate the battery life.

the EFM32 Zero Gecko

Starter Kit

There are a number of versions of

the ARM Cortex core, the

LPC1768 mbed uses the M3.

The simplest are the M0 or M0+

cores. These are specifically

designed for small scale, low

power and low cost applications.

The EFM Zero Gecko Starter Kit is

a development board based

around the Silicon Labs Zero

Gecko microcontroller.

It forms a useful example of a truly

low-power mbed-enabled design.

It is based on an M0+ core, and is

designed for extreme low power.

 Of great interest to us, it has an

on-board Energy Profiler, which

can measure current consumption

from 0.1 uA to 50 mA.

The EFM32 Zero Gecko Starter Kit

The EFM32 Zero Gecko Energy Profiler

• The LPC1768 has clearly defined power supply demands, in terms of supply voltages

and currents, with the potential for power-conscious applications.

• The mbed designers have satisfied these power supply requirements, but without the

intention of minimising power consumption.

• A range of clock sources are available to the LPC1768 and other microcontrollers;

they can be applied in different ways and for different purposes, and their frequency

multiplied or divided.

• The mbed power consumption can be improved, by switching off unnecessary circuit

elements, adjusting clock frequency, and applying the special low power modes, e.g.

Sleep and Deep Sleep. Even with this optimisation, current consumption remains too

high for effective battery-powered applications.

• For competitive low power design, circuits must be designed specifically and

rigorously for that purpose. The EFM32 Zero Gecko is one example where this has

been achieved, to good effect.

Chapter Review

