
Chapter 3:
Digital Input and Output

tw rev. 20.9.16

(Note to

Instructor: Insert

“Essentials of C”

(Appendix B)

presentation here

if required

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows:

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.

www.embedded-knowhow.co.uk

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/

/*Program Example 2.1: A program which flashes mbed LED1 on and off.

Demonstrating use of digital output and wait functions. Taken from the mbed

site. */

#include "mbed.h" //include the mbed header file as part of this program

// program variable myled is created, and linked with mbed LED1

DigitalOut myled(LED1);

int main() { //the main function starts here

 while(1) { //a continuous loop is created

 myled = 1; //switch the led on, by setting the output to logic 1

 wait(0.2); //wait 0.2 seconds

 myled = 0; //switch the led off

 wait(0.2); //wait 0.2 seconds

 } //end of while loop

} //end of main function

Thinking about the First Program

C code

feature

Check your understanding of how this program is structured, its use

of #include, main() and while(1), and the DigitalOut API feature.

The mbed API, and DigitalOut

The mbed comes with an API (Application Programming Interface), which is used to create

building blocks for any mbed programme. Learn to tell the difference between regular

C/C++, and API elements.

The DigitalOut component creates a C++ class, called DigitalOut. The class then has a

set of member functions, listed here in the Table. The first of these is a C++ constructor,

which must have the same name as the class itself. This can be used to create C++

objects. By using the DigitalOut constructor, we can create C++ objects.

In our first example we create the object myled. We can then write to it and read from it,

using the functions write() and read(). These are member functions of the class, so their

format would be myled.write(), and so on. Having created the myled object we can

however invoke the API operator shorthand, mentioned in the Table, which applies the

assign operator = . Hence when we write

 myled = 1;

the variable value is then not only changed (normal C usage), but it is also written to the

digital output. This replaces myled.write(1);. We find similar shorthands offered for all

peripheral API groups in the mbed API.

Functions Usage
DigitalOut Create a DigitalOut connected to the specified pin
write Set the output, specified as 0 or 1 (int)
read Return the output setting, represented as 0 or 1 (int)
operator = A shorthand for write
operator int() A shorthand for read

/*Program Example 2.1: A program which flashes mbed LED1 on and off.

Demonstrating use of digital output and wait functions. Taken from the mbed

site. */

#include "mbed.h" //include the mbed header file as part of this program

// program variable myled is created, and linked with mbed LED1

DigitalOut myled(LED1);

int main() { //the main function starts here

 while(1) { //a continuous loop is created

 myled = 1; //switch the led on, by setting the output to logic 1

 wait(0.2); //wait 0.2 seconds

 myled = 0; //switch the led off

 wait(0.2); //wait 0.2 seconds

 } //end of while loop

} //end of main function

Thinking about the First Program

C code

feature

Check your understanding of how this program is structured, its use

of #include, main() and while(1), and the DigitalOut API feature.

Mbed Library wait Functions

C/C++ Function Action

wait waits for the number of seconds specified (float)

wait_ms waits for the number of milliseconds specified (int)

wait_us waits for the number of microseconds specified (int)

The Wait functions available are shown in the Table. Note the different data

types required for each. Misuse use of these can lead to erroneous wait

periods!

Questions from the Quiz

Binary Hexadecimal Decimal

0101 1110 5E 94

1101

 77

 129

 6F2

1101 1100 1001

 4096

1. Complete the Table,

converting between the

different number types. The

first row of numbers is an

example.

3. A loop in an mbed program is untidily coded as follows.
 While (1){

 redled = 0;

 wait_ms(12);

 greenled = 1;

 wait(0.002);

 greenled = 0;

 wait_us(24000);

 }
What is the total period of the loop, expressed in seconds, milliseconds, and

microseconds?

/*Program Example 3.1: Demonstrates use of while loops. No external connection required

 */

#include "mbed.h"

DigitalOut myled(LED1);

DigitalOut yourled(LED4);

int main() {

 char i=0; //declare variable i, and set to 0

 while(1){ //start endless loop

 while(i<10) { //start first conditional while loop

 myled = 1;

 wait(0.2);

 myled = 0;

 wait(0.2);

 i = i+1; //increment i

 } //end of first conditional while loop

 while(i>0) { //start second conditional loop

 yourled = 1;

 wait(0.2);

 yourled = 0;

 wait(0.2);

 i = i-1;

 }

 } //end infinite loop block

} //end of main

Exploring the while Loop

C code

feature

Note the declaration of the variable i, and the conditional use of while().

Voltages as Logic Values

General logic levels for the mbed

In any digital circuit, logic values are represented as electrical voltages. Here

now is the BIG benefit of digital electronics: we don’t need a precise voltage

to represent a logical value. For most digital inputs, the LPC1678 interprets

any input voltage below 1.0 V as logic 0, and any input voltage above 2.3 V

as Logic 1.

Digital Output Connections on the mbed

The mbed has 26 digital input/output (I/O) pins (pins 5-30 as shown), which

can be configured either as digital inputs or outputs.

Using LEDs 1

a) Led V-I b) Gate Output Sourcing c) Gate Output Sinking
Characteristic Current to LED Load Current from LED

The LED (light emitting diode) has the voltage/current characteristic shown in

a). A small forward voltage causes very little current to flow. As the voltage

increases there comes a point where the current increases rapidly. Figures b)

and c) show circuits used to make direct connections of LEDs to the output of

logic gates, for example an mbed pin configured as an output. Some LEDs,

such as the ones recommended for the next program, have the series

resistance built into them. They therefore don’t need any external resistor

connected.

Using mbed External Pins

Connect the circuit shown. The mbed has a ground connection on pin 1.

Remember to attach the anode of the LEDs (the side with the longer leg) to the

mbed pins. The negative side (cathode) should be connected to ground. For

this and many circuits we take power from the USB bus.

/*Program Example 3.2: Flashes red and green LEDs in simple time-based pattern

 */

#include "mbed.h"

DigitalOut redled(p5); //define and name a digital output on pin 5

DigitalOut greenled(p6); //define and name a digital output on pin 6

int main() {

 while(1) {

 redled = 1;

 greenled = 0;

 wait(0.2);

 redled = 0;

 greenled = 1;

 wait(0.2);

 }

}

Example Program using DigitalOut

The code extends ideas already applied, so it should be easy to understand that

the green and red LEDs are programmed to flash alternately.

Connecting Switches to a Digital System

a) Single-pole double-throw (SPDT) connection.
b) Single-pole single-throw (SPST) with pull-up resistor.
c) SPST with pull-down resistor
Note: the diagrams show a logic buffer, which can in each
case be a microcontroller/mbed input.

We can use ordinary electromechanical switches to create logic levels, which will

satisfy the logic level requirements seen earlier. Three commonly used ways are

shown here.

Functions Usage
DigitalIn Create a DigitalIn connected to the specified pin
read Read the input, represented as 0 or 1 (int)
mode Set the input pin mode, with parameter chosen

from: PullUp, PullDown, PullNone, OpenDrain
operator int() A shorthand for read()

The DigitalIn API

The mbed API has the digital input functions listed here, with format

identical to that of DigitalOut, already seen.

Note that use of DigitalIn enables by default the internal pull-down

resistor, i.e. the input circuit is configured as Figure (c) in previous

slide. This can be disabled, or an internal pull-up enabled, using the

mode() function.

Using if to Respond to a Switch Input
/*Program Example 3.3: Flashes one of two LEDs, depending on the state of a 2-way switch

*/

#include "mbed.h"

DigitalOut redled(p5);

DigitalOut greenled(p6);

DigitalIn switchinput(p7);

int main() {

 while(1) {

 if (switchinput==1) { //test value of switchinput

 //execute following block if switchinput is 1

 greenled = 0; //green led is off

 redled = 1; // flash red led

 wait(0.2);

 redled = 0;

 wait(0.2);

 } //end of if

 else { //here if switchinput is 0

 redled = 0; //red led is off

 greenled = 1; // flash green led

 wait(0.2);

 greenled = 0;

 wait(0.2);

 } //end of else

 } //end of while(1)

} //end of main

C code

feature

Check carefully the use of if and else, to allow selection of actions.

Digital Input and Output with the Application Board

(a) Joystick

The application board has a Joystick, which is a set of switches, and a tricolour

LED. These are both symbolised below, with mbed pin connections.

The joystick (item 2 in figure) acts as a 5-position multi-way switch, with the wiper

connected to the supply voltage.

The tri-colour LED (item 9 in figure) connects through current-limiting resistors to

mbed pins. The LED is a “common anode” type, which means the three internal

LED anodes are connected (“commoned”) together, and available externally as a

single connection. It requires a logic 0 on the mbed pin to light the LED.

(b) Three-colour
LED

/*Program Example 3.4.

Uses Joystick values to switch tri-colour led */

#include "mbed.h"

DigitalOut redled(p23); //leds in tri-colour led

DigitalOut greenled(p24);

DigitalOut blueled(p25);

DigitalIn joyleft(p13); //Joystick left

DigitalIn joyright(p16); //Joystick right

int main() {

 greenled=redled=blueled=1; //switch all leds off (logic 1 for off)

 redled = 0; //switch red led on, diagnostic (logic 0 for on)

 wait(1);

 redled = 1; //switch red led off

 while(1) {

 if (joyleft==1) { //test if the joystick is pushed left

 greenled = 0; //switch green led on

 wait(1); //wait one second

 greenled = 1; //switch green led off

 }

 if (joyright==1) { //test if the joystick is pushed right

 redled = 0; //switch red led on

 wait(1);

 redled = 1; //switch red led off

 }

 }

}

Controlling application board LED with the Joystick

/*Program Example 3.5: Transfers the value of the joystick to mbed LEDs

 */

#include "mbed.h"

BusIn joystick(p15,p12,p13,p16);

DigitalIn fire(p14);

BusOut leds(LED1,LED2,LED3,LED4);

int main(){

 while(1){

 if (fire) {

 leds=0xf;

 }

 else {

 leds=joystick;

 }

 wait(0.1);

 }

}

Controlling mbed LEDs from the app board Joystick

 It’s useful to be able to group digital inputs or outputs, so that we can read

or switch whole groups at the same time. BusIn allows you to group a set

of digital inputs into one bus, so that you can read a digital word direct from

it. The equivalent output is BusOut. Applying either simply requires you to

specify a name, and then list in brackets the pins which will be members of

that bus, msb first.

C code

feature

Interfacing Simple Opto Devices

c) Simple drive
circuit for

opto-sensor

a) The reflective opto-sensor b) The transmissive opto-sensor

Opto-sensors are simple

examples of sensors with

“almost” digital outputs. When a

light falls on the base of an

opto-transistor, it conducts;

when there is no light it doesn’t.

Either of the sensors shown

can be connected in the circuit

of (c).

220R

KTIR

10k

Connecting an Opto-Sensor to the mbed

The figure shows how a transmissive opto-sensor can be connected to an

mbed. The device used is a KTIR0621DS, made by Kingbright; similar

devices can be used.

/*Program Example 3.6: Simple program to test KTIR slotted optosensor.

Switches an LED according to state of sensor

*/

#include "mbed.h"

DigitalOut redled(p5);

DigitalIn opto_switch(p12);

int main() {

 while(1) {

 if (opto_switch==1) //input = 1 if beam interrupted

 redled = 1; //switch led on if beam interrupted

 else

 redled = 0; //led off if no interruption

 } //end of while

}

Applying the Photo-Interrupter

The output of the sensor is connected to pin 12, which is configured in the

program as a digital input. The program switches the LED on when the

beam is interrupted, i.e. an object has been sensed. To make the selection,

we use the if and else keywords, as in the previous example. Now however

there is just one line of code to be executed for either state. It is not

necessary to use braces to contain these single lines.

Seven-Segment Displays

The seven-segment display is a versatile configuration. By lighting different

combinations of the seven segments, all numerical digits can be displayed,

as well as a surprising number of alphabetic characters. A decimal point is

usually included, as shown. This means that there are eight LEDs in the

display, needing 16 connections. To simplify matters, either all LED anodes

(“common anode”) are connected together, or all LED cathodes (“common

cathode”).

Driving the Display

A small seven-segment display can be driven directly from a microcontroller. In

the case of common cathode, the cathode is connected to ground, and each

segment is connected to a port pin. If the segments are connected in this

sequence to form a byte,

(MSB) DP g f e d c b a (LSB)

then the values shown in the Table apply. For example, if 0 is to be displayed,

then all outer segments, i.e. abcdef must be lit, with the corresponding bits

from the microcontroller set to 1.

Mbed Connected to a Common Cathode Display

The mbed runs from a 3.3 V supply. Each

display LED requires around 1.8 V across it

in order to light. This is within the mbed

capability. If there were two LEDs in series

in each segment however, the mbed would

barely be able to switch them into

conduction.

The internal resistance of the mbed

output pins can be shown to be very

approximately 100 W.

Calculating as shown, the current per

diode is around 15 mA, a reasonable

value for an LED.

Questions from the Quiz

6. What is the current taken by the display in the previous slide, when the

digit 3 is showing?

7. If in the previous slide a segment current of approximately 4 mA was

required, what value of resistor would need to be introduced in series with

each segment?

/*Program Example 3.7: Simple demonstration of 7-segment display. Display

digits 0, 1, 2, 3 in turn.

*/

#include "mbed.h"

BusOut display(p5,p6,p7,p8,p9,p10,p11,p12); // segments a,b,c,d,e,f,g,dp

int main() {

 while(1) {

 for(int i=0; i<4; i++) {

 switch (i){

 case 0: display = 0x3F; break; //display 0

 case 1: display = 0x06; break; //display 1

 case 2: display = 0x5B; break;

 case 3: display = 0x4F; break;

 } //end of switch

 wait(0.2);

 } //end of for

 } //end of while

} //end of main

Driving the Display, and some new Programming Features

C code

feature
Note the use of the for() loop, an alternative to while() for

creating conditional loops. Using switch() allows selection of one

of a range of options within a list, identified with the case keyword.

Each option is terminated with break.

Switching Larger DC loads

The mbed can drive simple DC loads directly with its digital I/O pins. If it’s

necessary to drive a load - say a motor - which needs more current than an

mbed port pin can supply, or which needs to run from a higher voltage, then an

interface circuit will be needed.

A good switching transistor for small

DC loads is the ZVN4206A, with main

characteristics shown. An important

value is the maximum VGS threshold

value, shown as 3 V. This means that

the MOSFET will respond, just, to the

3.3V Logic 1 output level of the mbed.

Drain

Switching Inductive Loads

A freewheeling diode is now needed because any inductance with current

flowing in it stores energy in the magnetic field which surrounds it. When

that current is interrupted, in this case by the transistor being switched off,

the energy has to be returned to the circuit. This happens through the diode,

which allows decaying current to continue to circulate.

Switching a DC motor with the mbed

The circuit shown can be applied. Any mbed digital output pin can of course

be used.

• Logic signals, expressed mathematically as 0 or 1, are represented in digital

electronic circuits as voltages. One range of voltages represents 0, another

represents 1.

• The mbed has 26 digital I/O pins, which can be configured either as input or

output.

• LEDs can be driven directly from the mbed digital outputs. They are a useful

means of displaying a logic value, and of contributing to a simple human

interface.

• Electromechanical switches can be connected to provide logic values to

digital inputs.

• Multi-coloured LEDs can be made by enclosing several individual LEDs of

different colors in the same housing. The mbed application board contains

one of these.

• A range of simple opto-sensors have almost digital outputs, and can with care

be connected directly to mbed pins.

• Where the mbed pin cannot provide enough power to drive an electrical load

directly, interface circuits must be used. For simple on/off switching a

transistor is often all that is needed.

Chapter Review

