
Chapter 4: Analog Output
tw rev. 26.8.16

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows:

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.

www.embedded-knowhow.co.uk

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/

Microcontrollers are digital devices; but they spend most of their time dealing

with a world which is analog. To make sense of incoming analog signals, for

example from a microphone or temperature sensor, they must be able to

convert them into digital form. After processing the data, they may then need

to convert digital data back to analog form, for example to drive a

loudspeaker or dc motor. Here we consider digital to analog conversion.

Introducing Data Conversion

The Digital-to-Analog Converter

A digital-to-analog converter (DAC) converts a binary input number into an

analog output. The actual circuitry inside the DAC need not concern us. We

can however represent the DAC as a block diagram, as shown. This has a

digital input, represented by D, and an analog output, represented by Vo. To

work, the DAC needs a voltage reference - a precise, stable and known

voltage.

Most DACs have a simple relationship between

their digital input and analog output, as shown

here. Vr is the value of the voltage reference.

001 010 011 000

V
r

2
n

V
r

2
n

V
r

2
n

2

3

V
r

2
n

(2
n
- 1)

Output Voltage

D (Input Binary Number)

(2
n
- 2) (2

n
- 1)

V
r

2
n

(2
n
- 2)

2
n

V
r

DAC Characteristics

The LPC1768 (and hence the mbed) has a 10-bit DAC; there will therefore

be 210 steps in its output characteristic, i.e. 1024. Normally it uses its own

power supply voltage, i.e. 3.3 V, as voltage reference. The step size, or

resolution, will therefore be 3.3/1024, i.e. 3.22 mV.

Analog Output on the mbed

Functions Usage

AnalogOut
Create an AnalogOut object connected to
the specified pin

write
Set the output voltage, specified as a
percentage (float)

write_u16
Set the output voltage, represented as an
unsigned short in the range [0x0, 0xFFFF]

read
Return the current output voltage setting,
measured as a percentage (float)

operator= An operator shorthand for write()

C code

feature

Check your understanding of keywords float, short and unsigned.

The mbed has an internal DAC. The output of this connects to the mbed’s

single analog output, on pin 18. This has a set of API utilities which can be

used with it.

/*Program Example 4.1: Three values of DAC are output in turn on

Pin 18. Read the output on a DVM.

*/

#include "mbed.h"

AnalogOut Aout(p18); //create an analog output on pin 18

int main() {

 while(1) {

 Aout=0.25; // 0.25*3.3V = 0.825V

 wait(2);

 Aout=0.5; // 0.5*3.3V = 1.65V

 wait(2);

 Aout=0.75; // 0.75*3.3V = 2.475V

 wait(2);

 }

}

Setting Simple Analog Outputs

In this program we create an analog output labelled Aout, using

AnalogOut. It’s then possible to set the analog output simply by

setting Aout to any permissible value. Aout takes a floating point

number between 0.0 and 1.0. The actual output voltage on pin 18 is

between 0 V and 3.3 V; the floating point number is scaled to this.

/*Program Example 4.2: Sawtooth waveform on DAC output. View on

oscilloscope */

#include "mbed.h"

AnalogOut Aout(p18);

float i;

int main() {

 while(1){

 for (i=0;i<1;i=i+0.1){ // i is incremented in steps of 0.1

 Aout=i;

 wait(0.001); // wait 1 millisecond

 }

 }

}

Generating a sawtooth waveform

Generating a sine wave

/*Program Example 4.3: Sine wave on DAC output. View on oscilloscope

 */

#include "mbed.h"

AnalogOut Aout(p18);

float i;

int main() {

 while(1) {

 for (i=0;i<2;i=i+0.05) {

 Aout=0.5+0.5*sin(i*3.14159); // Compute the sine value,+ half the range

 wait(.001); // Controls the sine wave period

 }

 }

}

C code

feature
Here we apply the sin() function,

part of the C standard library.

1. A 7-bit DAC obeys the equation shown earlier, and has a voltage reference of

2.56 V.

 a) What is its resolution?

 b) What is its output if the input is 100 0101?

 c) What is its output if the input is 0x2A?

 d) What is its digital input in decimal and binary if its output reads 0.48 V?

3. What is the output of the LPC1768 DAC, if its input digital word is

 a) 00 0000 1000

 b) 0x80

 c) 10 1000 1000 ?

4. What output voltages will be read on a DVM while this program loop runs on the

mbed?
 while(1){
 for (i=0;i<1;i=i+0.2){

 Aout=i;

 wait(0.1);

 }

 }

5. The program in Question 4 gives a crude saw tooth waveform. What is its period?

Questions from the Quiz

Another Form of Analog Output: Pulse Width Modulation

 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =
𝑝𝑢𝑙𝑠𝑒 𝑜𝑛 𝑡𝑖𝑚𝑒

𝑝𝑢𝑙𝑠𝑒 𝑝𝑒𝑟𝑖𝑜𝑑
∗ 100%

Pulse width modulation (PWM) is an alternative to the DAC; PWM represents a neat

and simple way of getting a rectangular digital waveform to control an analog

variable, usually voltage or current. PWM is used in a variety of applications, ranging

from telecommunications to robotic control.

Whatever duty cycle a PWM stream has, there is an average value, as shown. By

controlling the duty cycle, we control this average value. When using PWM, it is this

average that we’re usually interested in.

L

R

S

I

VS

D

L

R

S

I

VS

D

Simple Averaging Circuits

Resistor-capacitor low-pass filter An inductive load

The average PWM value can be extracted from the PWM stream in a number of

ways. We can use a low-pass filter, like the resistor-capacitor combination below

left. In this case, and as long as PWM frequency and values of R and C are well-

chosen, Vout becomes an analog output, with a bit of ripple, and the combination of

PWM and filter acts just like a DAC. Alternatively, if we switch the current flowing in

an inductive load, below right, then the inductance has an averaging effect on the

current flowing through it. This is important, as the windings of any motor are

inductive, so we can use this technique for motor control.

Functions Usage

PwmOut Create a PwmOut object connected to the specified pin
write Set the output duty-cycle, specified as a normalised float (0.0 – 1.0)
read Return the current output duty-cycle setting, measured as a normalised float (0.0 – 1.0)
period Set the PWM period, specified in seconds (float), keeping the duty cycle the same.
period_ms Set the PWM period, specified in milliseconds (int), keeping the duty cycle the same.

period_us Set the PWM period, specified in microseconds (int), keeping the duty cycle the same.

pulsewidth Set the PWM pulse width, specified in seconds (float), keeping the period the same.
pulsewidth_ms Set the PWM pulse width, specified in milliseconds (int), keeping the period the same.
pulsewidth_us Set the PWM pulse width, specified microseconds (int), keeping the period the same.
mbed-defined

operator =
An operator shorthand for write()

PWM on the mbed

The mbed has six PWM outputs, on pins 21-26. Each

has two variables, period and pulse width, or duty

cycle derived from these. Similar to previous

examples, a PWM output can be established, named

and allocated to a pin using PwmOut. All PWM

outputs share the same period/frequency.

/*Sets PWM source to fixed frequency and duty cycle. Observe output on

oscilloscope.

 */

#include "mbed.h"

PwmOut PWM1(p21); //create a PWM output called PWM1 on pin 21

int main() {

 PWM1.period(0.010); // set PWM period to 10 ms

 PWM1=0.5; // set duty cycle to 50%

}

A Trial PWM Output

This program generates a 100 Hz pulse with 50% duty

cycle, i.e. a perfect square wave, appearing on pin 21.

/*Program Example 4.5: PWM control to DC motor is repeatedly ramped

 */

#include "mbed.h"

PwmOut PWM1(p21);

float i;

int main() {

 PWM1.period(0.010); //set PWM period to 10 ms

 while(1) {

 for (i=0;i<1;i=i+0.01) {

 PWM1=i; //update PWM duty cycle

 wait(0.2);

 }

 }

}

Speed Control of a Small Motor

(Gate of MOSFET should now be connected to pin 21)

/*Program Example 4.6: Software generated PWM. 2 PWM values generated in turn, with

full on and off included for comparison.

 */

#include "mbed.h"

DigitalOut motor(p6);

int i;

int main() {

 while(1) {

 motor = 0; //motor switched off for 5 secs

 wait (5);

 for (i=0;i<5000;i=i+1) { //5000 PWM cycles, low duty cycle

 motor = 1;

 wait_us(400); //output high for 400us

 motor = 0;

 wait_us(600); //output low for 600us

 }

 for (i=0;i<5000;i=i+1) { //5000 PWM cycles, high duty cycle

 motor = 1;

 wait_us(800); //output high for 800us

 motor = 0;

 wait_us(200); //output low for 200us

 }

 motor = 1; //motor switched fully on for 5 secs

 wait (5);

 }

}

Generating PWM in Software

Although we have just used PWM sources on the mbed, it is useful to realise that

these aren’t essential for creating PWM; this can be done just with a digital output,

and some timing.

7. A PWM data stream has a frequency of 4 kHz, and duty cycle of 25%.

What is its pulse width?

8. A PWM data stream has period of 20 ms, and on time of 1 ms. What is

its duty cycle?

9. The PWM on an mbed is set up with these statements. What is the on

time of the waveform?
 PWM1.period(0.004); // set PWM period

 PWM1=0.75; // set duty cycle

Questions from the Quiz

1.25ms
0 degrees

90 degrees

180 degrees

1.5ms

1.75ms0

20ms

Servo Control

A servo is a small rotary position control device, often used in radio-

controlled cars and aircraft to control angular position of variables such as

steering, elevators and rudders. Servos are now popular in certain robotic

applications. The servo shaft can be positioned to specific angular positions

by sending the servo a PWM signal, as shown.

http://www.conrad-uk.com/medias/global/ce/2000_2999/2000/2070/2074/207423_LB_00_FB.EPS_1000.jpg

Servo Control with the mbed

The servo requires a higher current than the USB standard can provide, and so

it must be powered using an external supply, e.g. with a 4xAA (6 V) battery

pack. The app board has PWM output connectors, so both breadboard or app

board builds are possible.

/*Program Example 4.7: Plays the tune "Oranges and Lemons" on a piezo

buzzer, using PWM

*/

#include "mbed.h"

PwmOut buzzer(p21);

 //frequency array

float frequency[]={659,554,659,554,440,494,554,587,494,659,554,440};

float beat[]={1,1,1,1,1,0.5,0.5,1,1,1,1,2}; //beat array

int main() {

 while (1) {

 for (int i=0;i<=11;i++) {

 buzzer.period(1/(2*frequency[i])); // set PWM period

 buzzer=0.5; // set duty cycle

 wait(0.4*beat[i]); // hold for beat period

 }

 }

}

Producing Audio Output

The program uses two arrays, one defined for frequency data, the other for

beat length. There are 12 values in each, for each of the 12 notes in the tune.

From the frequency array the PWM period is calculated and set, always with a

50% duty ratio.

C code

feature

• A digital-to-analog converter (DAC) converts an input binary number

to an output analog voltage, which is proportional to that input

number.

• DACs are widely used to create continuously varying voltages, for

example to generate analog waveforms.

• The mbed has a single DAC, and associated set of library functions.

• Pulse Width Modulation (PWM) provides a way of controlling certain

analog quantities, by varying the pulse width of a fixed frequency

rectangular waveform.

• PWM is widely used for controlling flow of electrical power, for

example led brightness or motor control.

• The mbed has six possible PWM outputs. They can all be individually

controlled, but must all share the same frequency.

Chapter review

