
Chapter 5:  

Analog Input 
tw rev. 30.8.16 

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows: 

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed 

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.  

www.embedded-knowhow.co.uk  

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/


The Analog-to-Digital Converter (ADC)  

An ADC is an electronic circuit 

whose digital output is proportional 

to its analog voltage input. 

Effectively it "measures" the input 

voltage, and gives a binary output 

number proportional to its size.  

The ADC works with a voltage 

reference. This is like a ruler or 

tape measure. In one way or other 

the ADC compares the input 

voltage with the voltage reference, 

and comes up with the output 

number depending on this 

comparison.  

The conversion takes time, maybe 

some micro-seconds or more, so 

the ADC needs to signal when it 

has finished.  



The Data Acquisition System 

The ADC almost always operates within a larger environment, often called a 

data acquisition system. Some features of a general purpose system are 

shown here.  



Range, Resolution and Quantisation  

(Equation. 5.1) 

Usually  

The ADC action follows Equation 5.1, and 

is shown graphically. The output binary 

number D is an integer, and for an n-bit 

number can take any value from 0 to (2n 

– 1).  

 

The difference between the maximum 

and minimum permissible input values is 

called the Range. Often the minimum 

value is 0 V, so the range is then just the 

maximum possible input value.  

 

The range of the ADC is directly linked to 

the value of the voltage reference; in 

many ADC circuits the range is equal to 

the reference voltage.  

 

The resolution is the size of a single step 

on the staircase characteristic.  



Questions from the Quiz  

2. An ideal 8-bit ADC has an input range of 5.12 V. What is its 

resolution, and greatest quantisation error? 

3. An ideal 10-bit ADC has a reference voltage of 2.048 V, and 

behaves according to Equation 5.1. For a particular input its output 

reads 10 1110 0001. What is the input voltage? 

4. What will be the result if an mbed is required to sample an analog 

input value of 4.2 V? 



time

V

samples

Sampling Frequency and Aliasing 

V

time

samples
original signal

reconstructed signal

The Nyquist sampling criterion states that the sampling frequency must be 

at least double that of the highest signal frequency. If the sampling criterion 

is not satisfied, then aliasing occurs – a new lower frequency is generated, 

as illustrated. 

When converting an analog signal 

to digital, we repeatedly take a 

‘sample’ and quantise this. The 

more samples we take, the more 

accurate the digital data will be. 

We generally sample at a fixed 

frequency, called the sampling 

frequency.  



Questions from the Quiz  

6. An ultrasound signal of 40 kHz is to be digitised. Recommend the minimum 

sampling frequency. 

7. The conversion time of an ADC is found to be 7.5 us. The ADC is set to 

convert repeatedly, with no other programming requirements. What is the 

maximum frequency signal it can digitise?  

8. The ADC in Question 7 is now used with a multiplexer, so that 4 inputs are 

repeatedly digitised in turn. A further time of 2500 ns per sample is required, to 

save the data and switch the input.  What is the maximum frequency signal that 

can now be digitised? 



Functions Usage 

AnalogIn  Create an AnalogIn object, connected to the specified pin  

read  Read the input voltage, represented as a float in the range (0.0 - 1.0) 

read_u16  Read the input voltage, represented as an unsigned short in the range 
(0x0 - 0xFFFF)  

Analog Input with the mbed 

The LPC1768, and hence the mbed, has a single 

12-bit ADC, with multiplexer. Its voltage reference 

is the supply voltage, 3.3 V.  The available input 

pins on the mbed are shown opposite, with API 

utilities below. The ADC output is available in either 

unsigned binary (as it would be at the ADC output), 

or as a floating point number. 



Controlling LED Brightness by Variable Voltage 

This simple application reads the analog input, and uses it to control the 

brightness of an LED by varying the voltage drive to the LED.  



/*Program Example 5.1: Uses analog input to control LED brightness, 

through DAC output 

                                                                            

*/ 

#include "mbed.h" 

AnalogOut Aout(p18);      //defines analog output on Pin 18 

AnalogIn Ain(p20)         //defines analog input on Pin 20 

  

int main() { 

  while(1) { 

    Aout=Ain;     //transfer analog in value to analog out, both  

      //are type float 

  } 

} 

 

Controlling LED Brightness by Variable Voltage 



Controlling LED Brightness by PWM 

/*Program Example 5.2: Uses analog input to control PWM duty 

cycle, fixed period 

                                                                     

*/ 

#include "mbed.h" 

PwmOut PWM1(p23); 

AnalogIn Ain(p20);          //defines analog input on Pin 20 

  

int main() { 

  while(1){   

    PWM1.period(0.010);  // set PWM period to 10 ms 

    PWM1=Ain;            //Analog in value becomes PWM duty, both 

are type float 

    wait(0.1); 

  } 

} 

The potentiometer can be used in a similar way to alter the PWM duty 

cycle. This Program Example will run on the app board, lighting the red 

LED. Alternatively use the previous circuit, except that the LED should be 

connected to the PWM output on pin 23. The LED brightness should again 

be controlled by the potentiometer.  



Controlling PWM Frequency 

/*Program Example 5.3: Uses analog input to control PWM period. 

                                                               */ 

 

#include "mbed.h" 

PwmOut PWM1(p23); 

AnalogIn Ain(p20); 

  

int main() { 

    while(1){ 

      PWM1.period(Ain/10+0.001);            // set PWM period  

      PWM1=0.5;                             // set duty cycle 

      wait(0.5); 

    } 

} 

The potentiometer can again be used to alter the PWM frequency, applying 

this program. This can run on app board or breadboard. 



An Interlude - Displaying Values on the Computer Screen 

It is possible to print values from the mbed to the PC screen, so any mbed-generated data 

can be displayed. Both mbed and computer need to be configured to send and receive 

data. For the computer we need a terminal emulator. The mbed site recommends Tera 

Term for Windows users, or CoolTerm for Apple OS X developers. Appendix E tells you 

how to set this up.  

The mbed can then be made to 

appear to the computer as a 

serial port, communicating 

through the USB connection. It 

links up with the USB through 

one of its own asynchronous 

serial ports.  



Displaying Values on the Computer Screen 

/*Program Example 5.4: Reads input voltage through the ADC, and transfers to PC 

terminal 

                                                         */ 

#include "mbed.h" 

Serial pc(USBTX, USBRX);               //enable serial port which links to USB 

AnalogIn Ain(p20); 

  

float ADCdata; 

  

int main() { 

  pc.printf("ADC Data Values...\n\r"); //send an opening text message 

  while(1){ 

    ADCdata=Ain;   

    wait(0.5);   

    pc.printf("%1.3f \n\r",ADCdata);  //send the data to the terminal 

  }       

} 

 

This program uses the mbed API to set up the serial link, explained in Chapter 

7. It also uses the printf( ) function for the first time, along with some of its far-

from-friendly format specifiers. Check Section B9 (Appendix B) for some 

background on this.  

C code 

feature 



Scaling ADC Outputs to Recognised Units 

ADCdata=Ain*3.3;   

wait(0.5);   

pc.printf("%1.3f",ADCdata);   

pc.printf("V\n\r"); 

 

Multiplying the float value read from the ADC by 3.3 converts the result into 

a voltage reading. These lines can be added to the previous program.  

The resulting display 



for (int i=0;i<=9;i++) { 

  ADCdata=ADCdata+Ain*3.3;       //sum 10 samples 

}   

ADCdata=ADCdata/10;             //divide by 10         

Applying Averaging  to Reduce Noise     

Incoming analog signals may pick up interference. A very simple first step to 

improve this situation is to average the incoming signal. This should help to find 

the underlying average value, and remove any high frequency noise. Try 

inserting the for loop shown below, replacing the ADCdata=Ain; line in Program 

Example 5.4. This sums 10 ADC values, and takes their average. Note that the 

overall conversion now takes 10 times as long. This is a very simple example of 

digital signal processing.  



3.3V 

0V 

V 
o 

R 
LDR 

10k 

Simple Analog Sensors  - the Light Dependent Resistor 

Illumination 
(lux) 

RLDR  (W) Vo 

Dark > 1.0 M > 3.27 V 

10 9k 1.56 V 

1,000 400 0.13 V 

The light dependent resistor (LDR) is made from a piece of exposed 

semiconductor material. When light falls on it, its energy flips some 

electrons out of the crystalline structure; the brighter the light, the more 

electrons are released. These electrons are then available to conduct 

electricity, with the result that the resistance of the material falls. If the light 

is removed the electrons pop back into their place, and the resistance goes 

up again. The overall effect is that as illumination increases, the LDR 

resistance falls. 



Integrated Circuit Temperature Sensor 

Semiconductor action is highly dependent on temperature, so it’s not 

surprising that semiconductor temperature sensors are made. A very useful 

form of sensor is one which is contained in an integrated circuit, such as the 

LM35. This device has an output of 10 mV/oC, with operating temperature 

up to 110oC (for the LM35C version). It is thus immediately useful for a 

range of temperature sensing applications. The simplest connection for the 

LM35 is shown.  



Exploring data Conversion Timing  

/*Program Example 5.5: Inputs signal through ADC, and outputs to DAC. View DAC 

output on oscilloscope. To demonstrate Nyquist, connect variable frequency signal 

generator to ADC input. Allows measurement of conversion times, and explores 

Nyquist limit.     */ 

 

#include "mbed.h" 

AnalogOut Aout(p18);      //defines analog output on Pin 18 

AnalogIn Ain(p20);        //defines analog input on Pin 20 

DigitalOut test(p5); 

float ADCdata; 

  

int main() { 

  while(1) { 

    ADCdata=Ain;   //starts A-D conversion, and assigns analog value to ADCdata 

    test=1;        //switch test output, as time marker 

    test=0; 

    Aout=ADCdata;  // transfers stored value to DAC, and forces a D-A conversion  

    test=1;        //a double pulse, to mark the end of conversion  

    test=0;      

    test=1; 

    test=0;              

    //wait(0.001);    //optional wait state, to explore different cycle times 

   } 

} 

This program provides a mechanism for measuring conversion times, and then 

viewing Nyquist’s sampling theorem in action. See Exercises 5.7 and 5.8. 



Chapter Review  

• An ADC is available in the mbed; it can be used to digitise analog input 

signals. 

• It is important to understand ADC characteristics, in terms of input range, 

resolution, and conversion time.  

• Nyquist’s sampling theorem must be understood, and applied with care 

when sampling AC signals. The sampling frequency must be at least twice 

that of the highest frequency component in the sampled analog signal. 

• Aliasing occurs when the Nyquist criterion is not met, this can introduce 

false frequencies to the data. Aliasing can be avoided by introducing an anti-

aliasing filter to the analog signal before it is sampled. 

• Data gathered by the ADC can be further processed, and displayed or 

stored. 

• There are numerous sensors available which have an analog output; in 

many cases this output can be directly connected to the mbed ADC input. 


