
tw rev. 26.8.16

Chapter 7: Starting with

Serial Communication

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows:

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.

www.embedded-knowhow.co.uk

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/

Introducing Serial Data Communication

In serial data transfer, one bit of the data is transmitted at a time, along a single

interconnection.

While slower than parallel transfer, the small number of wires needed is a huge

advantage, especially in the embedded world, i.e. less pcb tracks,

interconnecting wires, and i.c. pins.

Synchronous serial data

Once we start applying the serial concept, a number of challenges arise. How

does the receiver know when each bit begins and ends, and how does it know

when each word begins and ends?

One way is to send a clock signal alongside the data, with one clock pulse per

data bit. The data is synchronised to the clock. This is called synchronous serial

communication.

D Q D Q D Q D Q D Q D Q D Q D Q
DIN

DOUT

QA QB QC QD QE QF QG QH

Clk

The Basics of a Serial Port: the Shift Register

An 8-Bit Shift Register – a Possible Receiver and/or Transmitter of Serial Data

An essential feature of most serial links is a shift register. This is made up of a

string of flip-flops, connected so that the output of one is connected to the input of

the next. Each flip-flop holds one bit of information.

Every time the shift register is pulsed by the clock signal, each flip-flop passes its

bit on to its neighbour on one side, and receives a new bit from its other

neighbour. The one at the input end clocks in data received from the outside

world, and the one of the output end outputs its bit.

A Simple Serial Link

A simple (synchronous) serial data link is shown. Node 1 is designated Master; it

controls what’s going on, as it controls the clock. The Slave is similar to the

Master, but receives the clock signal from the Master.

A simple Serial Link

Serial Peripheral Interface (SPI)

In the early days of microcontrollers, both National Semiconductors and Motorola

started introducing simple serial communication, based on the previous Figure.

 Each formulated a set of rules which governed how these links worked, and

allowed others to develop devices which could interface correctly.

These became de facto standards. Motorola called its standard Serial Peripheral

Interface (SPI), and National Semiconductors called theirs Microwire. They’re very

similar to each other.

SPI interconnections for multiple Slaves

SPI on the mbed: Master

Functions Usage

SPI Create a SPI master connected to the specified pins

format Configure the data transmission mode and data length

frequency Set the SPI bus clock frequency

write Write to the SPI Slave and return the response

The mbed has two SPI ports, each can be

configured as Master or Slave. The API summary

for SPI Master is shown. On the mbed, as with

many SPI devices, the same pin is used for SDI if

in Master mode, or SDO if Slave. Hence this pin

gets to be called MISO, Master in, Slave out. Its

partner pin is MOSI.

SPI on the mbed: Mode

Mode Polarity Phase

0 0 0

1 0 1

2 1 0

3 1 1

The mode is a feature of SPI which allows choice of which clock edge is used

to clock data into the shift register (indicated as “Data strobe” in the diagram),

and whether the clock idles high or low. For most applications the default

mode, i.e. Mode 0, is acceptable.

/* Program Example 7.1: Sets up the mbed as SPI master, and continuously sends

a single byte */

#include "mbed.h“

SPI ser_port(p11, p12, p13); // mosi, miso, sclk

char switch_word ; //word we will send

int main() {

 ser_port.format(8,0); // Setup the SPI for 8 bit data, Mode 0

operation

 ser_port.frequency(1000000); // Clock frequency is 1MHz

 while (1){

 switch_word=0xA1; //set up word to be transmitted

 ser_port.write(switch_word); //send switch_word

 wait_us(50);

 }

}

Simple SPI Master Program

This program shows a very simple setup for a SPI Master. It initialises the SPI

port, choosing for it the name ser_port, with the pins of one of the possible ports

being selected.

The format() function requires two variables: the number of bits, and the mode.

This program applies default values, i.e. 8 bits of data, and Mode 0 format.

Output signals can be viewed on the oscilloscope.

/*Program Example 7.2. Sets the mbed up as Master, and exchanges data with a

slave, sending its own switch positions, and displaying those of the slave.

 */

#include "mbed.h"

SPI ser_port(p11, p12, p13); // mosi, miso, sclk

DigitalOut red_led(p25); //red led

DigitalOut green_led(p26); //green led

DigitalOut cs(p14); //this acts as “slave select”

DigitalIn switch_ip1(p5);

DigitalIn switch_ip2(p6);

char switch_word ; //word we will send

char recd_val; //value return from slave

//continued over

Creating an SPI data link: Master 1

This program is written for the circuit shown. It declares a variable switch_word,

the word that will be sent to the Slave, and the variable recd_val, which is the

value received from the Slave.

 int main() {

 while (1){

 //Default settings for SPI Master chosen, no need for further

configuration

 //Set up the word to be sent, by testing switch inputs

 switch_word=0xa0; //set up a recognisable output pattern

 if (switch_ip1==1)

 switch_word=switch_word|0x01; //OR in lsb

 if (switch_ip2==1)

 switch_word=switch_word|0x02; //OR in next lsb

 cs = 0; //select slave

 recd_val=ser_port.write(switch_word); //send switch_word and receive data

 cs = 1;

 wait(0.01);

//set leds according to incoming word from slave

 red_led=0; //preset both to 0

 green_led=0;

 recd_val=recd_val&0x03; //AND out unwanted bits

 if (recd_val==1)

 red_led=1;

 if (recd_val==2)

 green_led=1;

 if (recd_val==3){

 red_led=1;

 green_led=1;

 }

 }

}

Creating an SPI data link: Master 2

Functions Usage

SPISlave Create a SPI slave connected to the specified pins

format Configure the data transmission format

frequency Set the SPI bus clock frequency

receive Polls the SPI to see if data has been received

read Retrieve data from receive buffer as slave

reply Fill the transmission buffer with the value to be written out as slave on

the next received message from the master.

SPI on the mbed: Slave

The Slave program (next slide) uses the mbed functions shown. It mirrors the

Master program.

The Slave program also declares variables switch_word and recd_val, and

configures its switch_word just like the Master.

While the Master initiates a transmission when it wishes, the Slave must wait. It

does this with the receive() function. This returns 1 if data has been received, and

0 otherwise. If data has been received from the Master, then data has also been

sent from Slave to Master.

/*Program Example 7.3: Sets the mbed up as Slave, and exchanges data with a Master, sending

its own switch positions, and displaying those of the Master. as SPI slave.

 */

#include "mbed.h"

SPISlave ser_port(p11,p12,p13,p14); // mosi, miso, sclk, ssel

DigitalOut red_led(p25); //red led

DigitalOut green_led(p26); //green led

DigitalIn switch_ip1(p5);

DigitalIn switch_ip2(p6);

char switch_word ; //word we will send

char recd_val; //value received from master

int main() {

 //default formatting applied

 while(1) {

 //set up switch_word from switches that are pressed

 switch_word=0xa0; //set up a recognisable output pattern

 if (switch_ip1==1)

 switch_word=switch_word|0x01;

 if (switch_ip2==1)

 switch_word=switch_word|0x02;

 if(ser_port.receive()) { //test if data transfer has occurred

 recd_val = ser_port.read(); // Read byte from master

 ser_port.reply(switch_word); // Make this the next reply

 }

 //now set leds according to received word

 ...

 (continues as in Program Example 7.2)

Creating an SPI data link: Slave

The ADXL345 measures acceleration on 3 axes, using an internal capacitor

mounted in the plane of each axis. Acceleration causes the capacitor plates to

move. It is an example of a Microelectromechanical system (MEMS).

It converts the analog voltages to digital and outputs these, either in SPI or I2C

modes.

Because it is so small it is best purchased on a breakout board.

Using the ADXL345 Accelerometer

ADXL345 signal name mbed pin

Vcc Vout

Gnd Gnd

SCL 13

MOSI 11

MISO 12

|CS 14

*Address Name Description

0x00 DEVID Device ID

0x1D THRESH_TAP Tap threshold

0x1E/1F/20 OFSX, OFSY, OFSZ X, Y, Z axis offsets

0x21 DUR Tap duration

0x2D POWER_CTL Power-saving features control. Device powers up in standby mode;

setting bit 3 causes it to enter Measure mode.

0x31 DATA_FORMAT Data format control

Bits

7: force a self test by setting to 1

6: 1 = 3-wire SPI mode; 0 = 4-wire SPI mode

5: 0 sets interrupts active high, 1 sets them active low

4: always 0

3: 0 = output is 10-bit always; 1 = output depends on range setting

2: 1 = left justify result; 0 = right justify result

1-0: 00 = + 2 g; 01 = + 4 g; 10 = + 8 g; 11 = + 2 g;

0x33:0x32 DATAX1:DATAX0 X Axis Data, formatted according to DATA_FORMAT, in 2’s

complement.

0x35:0x34 DATAY1:DATAY0 Y Axis Data, as above

0x37:0x36 DATAZ1:DATAZ0 Z Axis Data, as above

* In any data transfer the register address is sent first, and formed:

 bit 7 = R/|W (1 for read, 0 for write); bit 6: 1 for multiple byte, 0 for single;

 bits 5-0: the lower five bits found in the Address column.

Selected ADXL345 registers

(From the ADXL345 datasheet: http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf)

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

/*Program Example 7.4: Reads values from accelerometer through SPI, and outputs

continuously to terminal screen.

*/

#include "mbed.h“

SPI acc(p11,p12,p13); // set up SPI interface on pins 11,12,13

DigitalOut cs(p14); // use pin 14 as chip select

Serial pc(USBTX, USBRX); // set up USB interface to host terminal

char buffer[6]; //raw data array type char

int16_t data[3]; // 16-bit twos-complement integer data

float x, y, z; // floating point data, to be displayed on-screen

int main() {

 cs=1; //initially ADXL345 is not activated

 acc.format(8,3); // 8 bit data, Mode 3

 acc.frequency(2000000); // 2MHz clock rate

 cs=0; //select the device

 acc.write(0x31); // data format register

 acc.write(0x0B); // format +/-16g, 0.004g/LSB

 cs=1; //end of transmission

 cs=0; //start a new transmission

 acc.write(0x2D); // power ctrl register

 acc.write(0x08); // measure mode

 cs=1; //end of transmission

 ...

//continued over

A simple ADXL345 program 1

This Program applies the ADXL345, reading acceleration in three axes, and outputting

the data to the host computer screen. The SPI port on pins 11, 12 and 13 connects to

the accelerometer.

//continued from previous

 while (1) { // infinite loop

 wait(0.2);

 cs=0; //start a transmission

 acc.write(0x80|0x40|0x32); // RW bit high, MB bit high, plus address

 for (int i = 0;i<=5;i++) {

 buffer[i]=acc.write(0x00); // read back 6 data bytes

 }

 cs=1; //end of transmission

 data[0] = buffer[1]<<8 | buffer[0]; // combine MSB and LSB

 data[1] = buffer[3]<<8 | buffer[2];

 data[2] = buffer[5]<<8 | buffer[4];

 x=0.004*data[0]; y=0.004*data[1]; z=0.004*data[2]; // convert to float,

 //actual g value

 pc.printf("x = %+1.2fg\t y = %+1.2fg\t z = %+1.2fg\n\r", x, y,z); //print

 }

}

A simple ADXL345 program 2

The SPI standard is extremely effective. The electronic hardware is simple and

therefore cheap, and data can be transferred rapidly.

There are disadvantages.

• There is no acknowledgement from the receiver, so in a simple system the

Master cannot be sure that data has been received.

• There is no addressing. In a system where there are multiple slaves, a separate

|SS line must be run to each Slave, as seen earlier. Therefore we begin to lose

the advantage that serial communications should give us, i.e. a limited number of

interconnect lines.

• There is no error-checking. Suppose some electromagnetic interference was

experienced in a long data link, data or clock would be corrupted, but the system

would have no way of detecting this, or correcting for it.

Overall SPI could be evaluated as simple, convenient and low-cost, but not

appropriate for complex or high reliability systems.

Evaluating SPI

Introducing I2C

The name I2C stands for Inter-Integrated Circuit bus. It aims to resolve some of

the perceived weaknesses of SPI.

I2C is a serial data protocol which operates with a master/slave relationship.

I2C only uses two physical wires, called serial data (SDA) and serial clock (SCL).

This means that data only travels in one direction at a time.

Any node can only pull down the SCL or SDA line to Logic 0; it cannot force the

line up to Logic 1. This role is played by a single pull-up resistor connected to

each line.

18

An I2C-based

system

Simple I2C Communications

The device that initiates

communication is termed the ‘master’.

A device being addressed by the

master is called a ‘slave’.

A data transfer is started by the master

signalling a Start condition, followed

by one or two bytes containing

address and control information.

The Start condition is defined by a

high to low transition of SDA when

SCL is high.

A low to high transition of SDA while

SCL is high defines a Stop condition

One SCL clock pulse is generated for

each SDA data bit, and data may only

change when the clock is low.
Start and Stop conditions

I2C has a built-in addressing scheme, which simplifies the task of linking multiple devices

together. Each slave has a predefined address. Slaves monitor the bus and respond only

to data and commands associate with their own address.

The byte following the Start condition is made up of seven address bits, and one data

direction bit (Read/Write).

All data transferred is in units of one byte, with no limit on the number of bytes transferred

in one message.

Each byte must be followed by a 1-bit acknowledge from the receiver, during which time

the transmitter relinquishes SDA control.

A Complete transfer of one byte

Simple I2C Communications

21

Questions from the Quiz

4. An SPI link is running with a 500 kHz clock. How long does it take for a

single message containing one data byte to be transmitted?

5. An mbed configured as SPI Master is to be connected to 3 other mbeds,

each configured as Slave. Sketch a circuit which shows how this

interconnection could be made. Explain your sketch.

6. An mbed is to be set up as SPI Master, using pins 11, 12, and 13, running at

a frequency of 4MHz, with 12-bit word length. The clock should idle at Logic 1,

and data should be latched on its negative edge. Write the necessary code to

set this up.

7. Repeat Question 4, but for I2C, ensuring that you calculate time for the

complete message.

8. Repeat Question 5, but for I2C. Identify carefully the advantages and

disadvantages of each connection.

I2C on the mbed

22

There are two mbed I2C ports. Library Master and Slave functions are shown in

the Tables below. These are more complex than SPI.

Functions Usage

I2C
Create an I2C Master interface, connected to the
specified pins

frequency Set the frequency of the I2C interface
read Read from an I2C slave

write Write to an I2C slave
start Creates a start condition on the I2C bus

stop Creates a stop condition on the I2C bus

Function Usage
I2CSlave Create an I2C Slave interface, connected to the

specified pins.
frequency Set the frequency of the I2C interface
receive Checks to see if this I2C Slave has been

addressed.
read Read from an I2C master.
write Write to an I2C master.
address Sets the I2C slave address.
stop Reset the I2C slave back into the known ready

receiving state.

Setting up an I2C mbed to mbed Data Link

This circuit is similar to the previous SPI one, but uses the I2C

link. Pull-up resistors must be added externally.

Setting up the I2C Data Link (Master)

/*Program Example 7.5

I2C Master, transfers switch state to second mbed acting as slave,

and displays state of slave's switches on its leds.

tjw 28.7.11*/

#include "mbed.h"

I2C i2c_port(p9, p10); // Configure a serial port, pins 9 and 10 are

sda,scl

DigitalOut red_led(p25); //red led

DigitalOut green_led(p26); //green led

DigitalIn switch_ip1(p5); //input switch

DigitalIn switch_ip2(p6);

char switch_word ; //word we will send

char recd_val; //value return from slave

const int addr = 0x52; // define the I2C slave address, an arbitrary even

number

Continued over…

This program follows that of the SPI example, except that SPI elements are

replaced by I2C.

Setting up the I2C Data Link (Master, cont.)

int main() {

 while(1) {

 switch_word=0xa0; //set up a recognisable output pattern

 if (switch_ip1==1)

 switch_word=switch_word|0x01; //OR in lsb

 if (switch_ip2==1)

 switch_word=switch_word|0x02; //OR in next lsb

 //send a single byte of data, in correct I2C package

 i2c_port.start(); //force a start condition

 i2c_port.write(addr); //send the address

 i2c_port.write(switch_word); //send one byte of data, ie switch_word

 i2c_port.stop(); //force a stop condition

 wait(0.002);

 //receive a single byte of data, in correct I2C package

 i2c_port.start();

 i2c_port.write(addr|0x01); //send address, with Read/Write bit set to Read

 recd_val=i2c_port.read(addr); //Read and save the received byte

 i2c_port.stop(); //force a stop condition

 //set leds according to word received from slave

 red_led=0; //preset both to 0

 green_led=0;

 recd_val=recd_val&0x03; //AND out unwanted bits

 if (recd_val==1)

 red_led=1;

 if (recd_val==2)

 green_led=1;

 if (recd_val==3){

 red_led=1;

 green_led=1;

 }

 wait(0.004);

 }

}

Setting up the I2C Data Link (Slave)

/*Program Example 7.6

I2C Slave, when called transfers switch state to mbed acting as Master,

and displays state of Master's switches on its leds.

tjw 28.7.11*/

#include <mbed.h>

I2CSlave slave(p9, p10); //Configure I2C slave

DigitalOut red_led(p25); //red led

DigitalOut green_led(p26); //green led

DigitalIn switch_ip1(p5);

DigitalIn switch_ip2(p6);

char switch_word ; //word we will send

char recd_val; //value received from master

Continued over...

The slave program is similar to the SPI example, with SPI features replaced by

I2C. The I2C slave responds to calls from the Master. The slave port is defined

with the mbed utility I2Cslave, with slave chosen as the port name. The slave

address is defined within the main() function, the same 0x52 as in the Master

program. The receive() function tests if an I2C transmission has been received.

This returns a 0 if the Slave has not been addressed, a 1 if it has been

addressed to read, and a 3 if addressed to write.

Setting up the I2C Data Link (Slave, cont.)

int main() {

 slave.address(0x52);

 while (1) {

 //set up switch_word from switches that are pressed

 switch_word=0xa0; //set up a recognisable output pattern

 if (switch_ip1==1)

 switch_word=switch_word|0x01;

 if (switch_ip2==1)

 switch_word=switch_word|0x02;

 slave.write(switch_word); //load up word to send

 //test for I2C, and act accordingly

 int i = slave.receive();

 if (i == 3){ //slave is addressed, Master will write

 recd_val= slave.read();

 //now set leds according to received word

 red_led=0;

 green_led=0;

 recd_val=recd_val&0x03;

 if (recd_val==1)

 red_led=1;

 if (recd_val==2)

 green_led=1;

 if (recd_val==3){

 red_led=1;

 green_led=1;

 }

 } //end of while

} //end of main

Communicating with an I2C temperature sensor

The Texas Instruments TMP102 temperature sensor has an I2C* data link. The

TMP102 itself is a tiny device, just as we would want of a temperature sensor.

We use it mounted on a small breakout board.

*Note from the data sheet that the TMP102 actually makes use of the SMbus - System Management

Bus. This was defined by Intel in 1995, and is based on I2C. In simple applications the two standards

can be mixed; for more advanced applications it is worth checking the small differences which there are.

Signal Link to

Mbed Pin

Notes

VCC (3.3V) 40

SDA 9 2.2 kΩ pull-up to 3.3 V

SCL 10 2.2 kΩ pull-up to 3.3 V

GND (0V) 1

ALT (Alert) 1

ADD0 1

Connect to Slave address

0V 0x90

Vcc 0x91

SDA 0x92

SCL 0x93

/*Program Example 7.7: Mbed communicates with TMP102 temperature sensor, and

scales and displays readings to screen.

 */

#include "mbed.h“

I2C tempsensor(p9, p10); //sda, sc1

Serial pc(USBTX, USBRX); //tx, rx

const int addr = 0x90;

char config_t[3];

char temp_read[2];

float temp;

int main() {

 config_t[0] = 0x01; //set pointer reg to 'config register'

 config_t[1] = 0x60; // config data byte1

 config_t[2] = 0xA0; // config data byte2

 tempsensor.write(addr, config_t, 3);

 config_t[0] = 0x00; //set pointer reg to 'data register'

 tempsensor.write(addr, config_t, 1); //send to pointer 'read temp'

 while(1) {

 wait(1);

 tempsensor.read(addr, temp_read, 2); //read the two-byte temp data

 temp = 0.0625 * (((temp_read[0] << 8) + temp_read[1]) >> 4); //convert data

 pc.printf("Temp = %.2f degC\n\r", temp);

 }

}

Communicating by I2C with the TMP102 temperature sensor
(check TMP102 data sheet for some of the codes used)

Using the SRF08 ultrasonic range finder

The SRF08 ultrasonic range finder can be used to measure the distance between

the sensor and an acoustically reflective surface or object in front of it.

It makes the measurement by transmitting a pulse of ultrasound from one of its

transducers, and then measuring the time for an echo to return to the other. If there

is no echo it times out.

The distance to the reflecting object is proportional to the time taken for the echo to

return. Knowing the speed of sound in air, the actual distance can be calculated.

 The SRF08 has an I2C interface.

/*Program Example 7.8: Configures and takes readings from the SRF08 ultrasonic range

finder, and displays them on screen.

*/

#include "mbed.h"

I2C rangefinder(p9, p10); //sda, sc1

Serial pc(USBTX, USBRX); //tx, rx

const int addr = 0xE0;

char config_r[2];

char range_read[2];

float range;

int main() {

 while (1) {

 config_r[0] = 0x00; //set pointer reg to ‘cmd register'

 config_r[1] = 0x51; //initialise, result in cm

 rangefinder.write(addr, config_r, 2);

 wait(0.07);

 config_r[0] = 0x02; //set pointer reg to 'data register'

 rangefinder.write(addr, config_r, 1); //send to pointer 'read range'

 rangefinder.read(addr, range_read, 2); //read the two-byte range data

 range = ((range_read[0] << 8) + range_read[1]);

 pc.printf("Range = %.2f cm\n\r", range); //print range on screen

 wait(0.05);

 }

}

Note that:

• The SRF08 I2C address is 0xE0.

• The pointer value for the command register is 0x00.

• A data value of 0x51 to the command register initialises the range finder to operate and return data in cm.

• A pointer value of 0x02 prepares for 16-bit data (i.e. two bytes) to be read.

Linking the SRF08 to an mbed

The I2C protocol is well-established and versatile. It is widely applied to short

distance data communication, and can be used to set up more complex

networks, and to add and subtract nodes with comparative ease.

 I2C provides a reasonably reliable system. If an addressed device doesn’t

send an acknowledgement, the Master can act upon that fault.

But

the bandwidth is comparatively limited, even in the faster versions of I2C.

I2C is still susceptible to interference, and does not check for errors. Therefore

it would be unlikely to be used in a medical, motor vehicle or other high

reliability application.

Evaluating I2C

Evaluating synchronous serial data communication

Synchronous serial communication protocols (like SPI, I2C) are extremely useful

ways of moving data around. But taking a clock signal to every node has these

disadvantages:

• An extra (clock) line needs to go to every data node.

• The bandwidth needed for the clock is always twice the bandwidth needed for the

data; therefore, it is the demands of the clock which limit the overall data rate.

• Over long distances, clock and data themselves could lose synchronisation.

Asynchronous serial data communication

Asynchronous communication doesn’t require the clock to be connected between nodes. A

common approach is:

• Data rate is predetermined – both transmitter and receiver are pre-set to recognise the

same data rate. Hence each node needs an accurate and stable clock source, from which

the data rate can be generated. Small variations from the theoretical value can however be

accommodated.

• Each byte or word is framed with a Start and Stop bit. These allow synchronisation to be

initiated before the data starts to flow.

• An asynchronous serial port is generally called a UART, Universal Asynchronous Receiver/

Transmitter. A UART has one connection for transmitted data, called TX, and another for

received data, called RX. The data rate that receiver and transmitter will operate at must be

pre-determined; this is specified by its baud rate.

Applying asynchronous communication on the mbed

Functions Usage

Serial Create a Serial port, connected to the specified transmit and receive pins

baud Set the baud rate of the serial port

format Set the transmission format used by the Serial port

putc Write a character

getc Read a character

printf Write a formatted string

scanf Read a formatted string

readable Determine if there is a character available to read

writeable Determine if there is space available to write a character

attach Attach a function to call whenever a serial interrupt is generated

The LPC1768 has four UARTs.

Three of these link to the mbed pins,

simply labelled “Serial”. The API

summary is shown.

Bidirectional data transfer between two mbed UARTs: Circuit

This replicates earlier circuits

for SPI and I2C, but now uses

the UART. Notice how the TX

from one mbed connects to the

RX of the other, and vice

versa.

The program appears in the

next slide ; the same program

should be loaded into both

mbeds – there is no Master or

Slave.

A Question from the Quiz

10. A UART is running with a 500 kHz baud rate. How long does it take for a

single message containing one data byte to be transmitted? Ensure that you

calculate time for the complete message.

/*Program Example 7.9: Sets the mbed up for async communication, and exchanges data with a

similar node, sending its own switch positions, and displaying those of the other.

 */

#include "mbed.h"

Serial async_port(p9, p10); //set up TX and RX on pins 9 and 10

DigitalOut red_led(p25); //red led

DigitalOut green_led(p26); //green led

DigitalOut strobe(p7); //a strobe to trigger the scope

DigitalIn switch_ip1(p5);

DigitalIn switch_ip2(p6);

char switch_word ; //the word we will send

char recd_val; //the received value

int main() {

 async_port.baud(9600); //set baud rate to 9600 (ie default)

 //accept default format, of 8 bits, no parity

 while (1){

 //Set up the word to be sent, by testing switch inputs

 switch_word=0xa0; //set up a recognisable output pattern

 if (switch_ip1==1)

 switch_word=switch_word|0x01; //OR in lsb

 if (switch_ip2==1)

 switch_word=switch_word|0x02; //OR in next lsb

 strobe =1; //short strobe pulse

 wait_us(10);

 strobe=0;

 async_port.putc(switch_word); //transmit switch_word

 if (async_port.readable()==1) //is there a character to be read?

 recd_val=async_port.getc(); //if yes, then read it

 ...

 (continues as in Program Example 7.2)

 ...

Bidirectional data transfer between two mbed UARTs

While the mbed has three UARTs connecting to the external pins, the LPC1768

has a fourth. This is reserved for communication back to the USB link, and can

be seen in the mbed block diagram repeated below. This UART acts just like any

of the others, in terms of its use of the API. The mbed compiler recognises pc,

USBTX and USBRX as identifiers to set up this connection, as in the line:

Serial pc(USBTX, USBRX);

With pc thus created, the API member functions can be exploited.

Applying synchronous communication with the host computer

Universal Serial Bus (USB)

In the early days of personal computing, different peripheral

devices each came with their own type of connector, and each

required software reconfigurations when they were fitted. This

was annoying, inefficient, and inflexible.

The USB protocol was introduced to provide a more flexible and

“universal” interconnection system, whereby peripherals could be

added or removed without the need for reconfiguring the whole

system (i.e. moving to a “plug and play” capability).

A USB network has one host, and can have one or many

functions, i.e. USB compatible devices that can interact with the

host.

USB version 2.0 uses a 4-wire interconnection. Two, labelled D+

and D-, carry the differential signal, and two are for power and

earth. USB functions can draw power from the host, taking up to

100 mA at a nominal 5 V.

USB capability on the mbed

Mbed USB library Description

USBMouse Allows the mbed to emulate a USB mouse

USBKeyboard Allows the mbed to emulate a USB keyboard

USBMouseKeyboard A USB mouse and keyboard feature set combined in a single library

USBHID Allows custom data to be sent and received from a Human Interface Device

(HID) allowing custom USB features to be developed without the need for

host drivers to be installed

USBSerial Emulates an additional standard serial port on the mbed, through the USB

connections

USBMIDI Allows send and receive of MIDI messages in communication with a host

PC using MIDI sequencer software

USBAudio Allows the mbed to be recognised as an audio interface allowing streaming

audio to be read, output or analysed and processed.

USBMSD Emulates a mass storage device over USB, allowing interaction with a USB

storage device.

The mbed has two USB ports. One connects to the host PC, which provides

power to the mbed. The second is on pins 31 and 32 .

There are a many USB mbed features available for use, supported by the

USBDevice library. Most of them allow the mbed to emulate a number of external

devices, through USB.

Using the mbed to emulate a USB mouse

With USBMouse it is possible to make the mbed behave like a standard USB

mouse, sending position and button press commands to the host. The program

example implements a USBMouse interface and continuously sends relative

position information to move the mouse pointer around four co-ordinates which

make up a square. These are defined by the two arrays dx and dy.

To run this program it is necessary to import the USBDevice library through the

compiler.

/* Program Example 7.10: Emulating a USB mouse

 */

#include "mbed.h" // include mbed library

#include "USBMouse.h" // include USB Mouse library

USBMouse mouse; // define USBMouse interface

int dx[]={40,0,-40,0}; // relative x position co-ordinates

int dy[]={0,40,0,-40}; // relative y position co-ordinates

int main() {

 while (1) {

 for (int i=0; i<4; i++) { // scroll through position co-ordinates

 mouse.move(dx[i],dy[i]); // move mouse to co-ordinate

 wait(0.2);

 }

 }

}

Chapter review

• Serial data links provide a ready means of communication between microcontroller and

peripherals, and/or between microcontrollers.

• SPI is a simple synchronous standard, which is still very widely applied. The mbed has

two SPI ports, and supporting library.

• While a very useful standard, SPI has certain very clear limitations, relating to a lack of

flexibility and robustness.

• The I2C protocol is a more sophisticated serial alternative to SPI; it runs on a 2-wire bus,

and includes addressing and acknowledgement.

• I2C is a flexible and versatile standard. Devices can be readily added to or removed from

an existing bus, multi-Master configurations are possible, and a Master can detect if a

Slave fails to respond, and can take appropriate action. Nevertheless, I2C has limitations

which mean it cannot be used for high reliability applications.

• A very wide range of peripheral devices are available, including intelligent sensors,

which communicate through SPI and I2C.

• A useful asynchronous alternative to I2C and SPI is provided by the UART. The mbed

has four of these, one of which provides a communication link back to the host

computer.

• The USB protocol is designed specifically for allowing plug-and-play communications

between a computer and peripheral devices such as a keyboard or mouse.

• There are a number of mbed USB libraries allowing the mbed to operate as a mouse or

a keyboard, or as an audio or MIDI interface for example.

