
Chapter 8:

Liquid Crystal Displays
rt rev. 12.9.16

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows:

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.

www.embedded-knowhow.co.uk

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/

Introducing liquid crystal technology

The liquid crystal is an organic compound which responds to an applied electric field by
changing the alignment of its molecules, and hence the light polarisation which it
introduces.

A small quantity of liquid crystal is contained between two parallel glass plates. A
suitable field can be applied if transparent electrodes are located on the glass surface. In
conjunction with the external polarising light filters, light is either blocked, or
transmitted by the display cell.

The electrodes can be made in any pattern desired, including single digits or symbols.

Liquid crystal character displays

A popular, indeed ubiquitous, form of LCD is the character display. These are widely
available from one line of characters to four or more, and are commonly seen on many
domestic and office items, such as photocopiers, burglar alarms or DVD players.

Driving this complex array of tiny LCD dots is far from simple, so such displays always
contain a hidden microcontroller, customised to drive the display. The first such
controller to gain widespread acceptance was the Hitachi HD44780. While this has been
superseded by others, they have kept the interface and internal structure of the Hitachi
device.

Liquid crystal character displays

The HD44780 contains an 80-byte RAM (Random Access Memory) to hold the display
data, and a ROM (Read Only Memory) for generating the characters.

It has a simple instruction set, including instructions for initialisation, cursor control
(moving, blanking, blinking), and clearing the display.

Communication with the controller is made via an 8-bit data bus, 3 control lines, and an
enable/strobe line (E).

The HD44780 communication lines are shown below.

Liquid crystal character displays
 Data written to the HD44780 controller is interpreted either as instruction or as display
data, depending on the state of the RS (Register Select) line.

The controller can be set up to operate in 8-bit or 4-bit mode.

In 4-bit mode only the four most significant bits of the bus are used, and two write
cycles are required to send a single byte.

In both cases the most significant bit doubles as the Busy flag when a Read is
undertaken.

RS R/W E Action

0 0

0 1

1 0

1 1

Write instruction code

Read busy flag and address counter

Write data

Read data

Using the PC1602F LCD display

We can interface the mbed processor to an external LCD, in order to display messages on
the screen.

Interfacing an LCD requires a few involved steps to prepare the device and achieve the
desired display. The following tasks must be considered in order to successfully interface
the LCD:

• Hardware integration: we will need to connect the LCD to the correct mbed pins.

• Modular coding: as there are many processes that need to be completed, it makes sense

to define LCD functions in modular files.

• Initialising the LCD: a specific sequence of control signals must be sent to the LCD in
order to initialise it.

• Outputting data: we will need to understand how the LCD converts control data into
legible display data.

We will use the 2x16 character Powertip PC1602F LCD, though a number of similar LCD
displays can be found with the same hardware configuration and functionality.

Using the PC1602F LCD display

The PC1602F display is a 2x16 character display with an on-board data controller chip
and an integrated backlight.

The LCD display has 16 connections, defined as follows:

Using the PC1602F LCD display

We will use the LCD in 4-bit mode. This means that only the upper 4 bits of the data bus
(DB4-DB7) are connected.

The two halves of any byte are sent in turn on these lines. As a result the LCD can be
controlled with only 7 lines, rather than the 11 lines which are required for 8-bit mode.

Every time a nibble (a 4-bit word is sometimes called a nibble) is sent, the E line must be
pulsed or toggled on and off.

The display is initialised by sending control instructions to the configuration registers in
the LCD.

This is done by setting RS and R/|W low, once the LCD has been initialised, display data
can be sent by setting the RS bit high.

As before, the E bit must be pulsed for every nibble of display data sent.

Connecting the PC1602F to the mbed

An mbed digital output should be attached to
each of the LCD data pins that are used.

Four outputs are required to send the 4-bit
instruction and display data and two outputs
are required to manipulate the RS and E control
lines.

The suggested interface configuration for
connecting the mbed to the PC1602F is as
shown opposite.

Note that, in simple applications, the LCD can
be heldcin write mode, so R/|W can be tied
permanently to ground (mbed pin 1).

If the R/|W line is tied to ground, then a 1ms
delay between data transfers is adequate to
ensure that all internal processes can complete
before the next transfer.

Using modular coding to interface the LCD display

Initialising and interfacing a peripheral device, such as an LCD, can be done effectively by
using modular files to define various parts of the code.

We will therefore use three files for this application. The files required are:

• a main code file (main.cpp) which can call functions defined in the LCD feature file

• an LCD definition file (LCD.cpp) which will include all the functions for initialising and

sending data to the LCD

• an LCD header file (LCD.h) which will be used to declare data and function prototypes

We will declare the following functions in our LCD header file

• toggle_enable(): a function to toggle/pulse the enable bit

• LCD_init(): a function to initialise the LCD

• display_to_LCD(): a function to display characters on the LCD

Using modular coding to interface the LCD display

Our LCD.h header file should therefore define the function prototypes as shown below

/* Program Example 8.1: LCD.h header file

 */

#ifndef LCD_H

#define LCD_H

#include "mbed.h"

void toggle_enable(void); //function to toggle/pulse the enable bit

void LCD_init(void); //function to initialise the LCD

void display_to_LCD(char value); //function to display characters

#endif

Initialising the display

A specific initialisation procedure must be programmed in order for the PC1602F display
to operate correctly. Full details are provided in the Powertip PC1602F datasheet, but
are summarised here.

We first need to wait a short period (approximately 20 ms), then set the RS and E lines
to zero and then send a number of configuration messages to set up the LCD.

We then need to send configuration data to the

• Function Mode register

• Display Mode register

• Clear Display register

In order to initialise the display.

Initialising the display

Function Mode
To set the LCD function mode, the RS, R/|W and DB0-7 bits should be set as shown
below. Remember in 4-bit mode, data bus values are sent as two nibbles.

If, for example, we send a binary value of 00101000 (0x28 hex) to the LCD data pins, this
defines 4-bit mode, 2 line display and 5x7 dot characters.

In the given example we would therefore send the value 0x2, pulse E, then send 0x8,
then pulse E again.

Initialising the display

Display Mode
The Display Mode control register must also be set up during initialisation. Here we need
to send a command to switch the display on, and to determine the cursor function. The
Display Mode register is defined as shown below.

Clear Display
Before data can be written to the display, the display must be cleared, and the cursor
reset to the first character in the first row (or any other location that you wish to write
data to). The Clear Display command is shown below.

Sending display data to the LCD

Characters are displayed by setting the RS flag to 1 (data setting), then sending a data
byte describing the ASCII character to be displayed.

When communicating with displays, by sending a single ASCII byte, the display is
informed which particular character should be shown.

The complete ASCII table is
included with the LCD
datasheet, but for interest
some common ASCII values for
display on the LCD are shown
in the Table opposite.

It can be seen for example,
that if we send the data value
0x48 to the display, the
character ‘H’ will be displayed.

The complete LCD.cpp definition

/* Program Example 8.2: Declaration of objects and

functions in LCD.cpp file

*/

#include “LCD.h"

DigitalOut RS(p19);

DigitalOut E(p20);

BusOut data(p21, p22, p23, p24);

//initialise LCD function

void LCD_init(void){

 wait(0.02); // pause for 20 ms

 RS=0; // set low to write control data

 E=0; // set low

 //function mode

 data=0x2; // 4 bit mode (packet 1, DB4-DB7)

 toggle_enable();

 data=0x8; // 2-line, 7 dot (packet 2, DB0-DB3)

 toggle_enable();

 //display mode

 data=0x0; // 4 bit mode (packet 1, DB4-DB7)

 toggle_enable();

 data=0xF; // display on, cursor on, blink on

 toggle_enable();

 //clear display

 data=0x0; //

 toggle_enable();

 data=0x1; // clear

 toggle_enable();

}

//… continued on right hand side

// … continued

void toggle_enable(void){

 E=1;

 wait(0.001);

 E=0;

 wait(0.001);

}

//display function

void display_to_LCD(char value){

 RS=1; // set high to write char data

 data=value>>4; // shifted right 4 =upper nibble

 toggle_enable();

 data=value; //bitmask with 0x0F =low nibble

 toggle_enable();

}

Utilising the LCD functions

We can now develop a main control file (main.cpp) to utilise the LCD functions
described above.

The followi9ng Program Example initialises the LCD, displays the word “HELLO” and then
displays the numerical characters from 0 to 9.

/* Program Example 8.3 Utilising LCD functions in the main.cpp file

 */

#include “LCD.h"

int main() {

 LCD_init(); // call the initialise function

 display_to_LCD(0x48); // ‘H’

 display_to_LCD(0x45); // ‘E’

 display_to_LCD(0x4C); // ‘L’

 display_to_LCD(0x4C); // ‘L’

 display_to_LCD(0x4F); // ‘O’

 for(char x=0x30;x<=0x39;x++){

 display_to_LCD(x); // display numbers 0-9

 }

}

Read further:
Moving the
display pointer to
a specified
location in
Section 8.2.8

Using the mbed TextLCD library

There is an mbed library which makes use of an alphanumeric LCD much simpler and
quicker to program.

The mbed TextLCD library is also more advanced than the simple functions we have
created, in particular the TextLCD library performs the laborious LCD setup routine for
us.

The TextLCD definition also tells the LCD object which pins are used for which functions.

The object definition is defined in the following manner:

TextLCD lcd(int rs, int e, int d0, int d1, int d2, int d3);

We need to ensure that our pins are defined in the same order. For our particular
hardware setup (described in Table 8.2) this will be:

TextLCD lcd(p19, p20, p21, p22, p23, p24);

Using the mbed TextLCD library

Simple printf() statements are used to display characters on the LCD screen.

The printf() function allows formatted print statements to be used. This means we are
able to send text strings and formatted data to a display, meaning that a function call is
not required for each individual character.

When using the printf() function with the mbed TextLCD library, the display object’s
name is also required, so if the TextLCD object is definedwith the object name lcd, then
a “Hello World” string can be written as follows:

lcd.printf("Hello World!");

When using predefined mbed libraries, such as TextLCD, the library file needs importing
to the mbed program. The mbed TextLCD library can be accessed from the following
location:

http://mbed.org/users/simon/libraries/TextLCD/livod0

The library header file must also be included with the #include statement in our
main.cpp file or relevant project header files.

Using the mbed TextLCD library

/*Program Example 8.5: TextLCD library Helo World example

 */

#include "mbed.h"

#include "TextLCD.h"

TextLCD lcd(p19, p20, p21, p22, p23, p24); //rs,e,d0,d1,d2,d3

int main() {

 lcd.printf("Hello World!");

}

Using the mbed TextLCD library

The Program Example below displays a count variable on the LCD display. The count
variable increments every second.

/* Program Example 8.6: LCD Counter example

 */

#include "mbed.h“

#include "TextLCD.h“

TextLCD lcd(p19, p20, p21, p22, p23, p24); // rs, e, d0, d1, d2, d3

int x=0;

int main() {

 lcd.printf("LCD Counter");

 while (1) {

 lcd.locate(5,1);

 lcd.printf("%i",x);

 wait(1);

 x++;

 }

}

Displaying analog input data on the LCD

We can connect a potentiometer between 3.3V and 0V with the wiper connected to pin
18.

We can multiply the analog input value by 100 to display a percentage between 0 and
100%, as shown in the Program Example below.

An infinite loop can be used so that the screen updates automatically. To do this it is
necessary to clear the screen and add a delay to set the update frequency.

/*Program Example 8.7: Display analog input data

 */

#include "mbed.h"

#include "TextLCD.h"

TextLCD lcd(p19, p20, p21, p22, p23, p24); //rs,e,d0, d1,d2,d3

AnalogIn Ain(p17);

float percentage;

int main() {

 while(1){

 percentage=Ain*100;

 lcd.printf("%1.2f",percentage);

 wait(0.002);

 lcd.cls();

 }

}

Read further:
Colour and
advanced LCD
displays in
Section 8.5

Voltmeter Exercise

Create a program to make the mbed and display act like a standard voltmeter, as shown
below. Note the following:

• You will need to convert the 0.0 - 1.0 analog input value to a value which represents 0

- 3.3 Volts.

• An infinite loop is required to allow the voltage value to continuously update as the
potentiometer position changes.

• Check the display with the reading from an actual voltmeter – is it accurate?

• Increase the number of decimal places that the voltmeter reads too. Evaluate the
noise and accuracy of the voltmeter readings with respect to the mbed’s ADC
resolution.

Pixel graphics – implementing the NHD-C12832 display

A more advanced LCD display allows the programmer to set or clear each individual pixel
on the screen. For example the NHD-C12832 incliuded on the mbed app board

The C12832 is an LCD matrix of 128x32 pixels, allowing more intricate images and text
messages to be displayed.

Pixel graphics – implementing the NHD-C12832 display

Formatted text can be printed to the screen by using the printf() function as defined in
Table 8.5 in the textbook. Program Example 8.8 prints a simple formatted string that
continuously counts up. Note the use of the cls() function to clear the screen at the
start of the program, and the locate function to set the position for the text to be drawn
at.

/*Program Example 8.8: Displaying a formatted string on the NHD-C12832

 */

#include "mbed.h" // Basic Library required for onchip peripherals

#include "C12832.h"

C12832 lcd(p5, p7, p6, p8, p11); // Initialize lcd

int main(){

 int j=0;

 lcd.cls(); // clear screen

 while(1){

 lcd.locate(10,10); // set location to x=10, y=10

 lcd.printf("Counter : %d",j); // print counter value

 j++; // increment j

 wait(0.5); // wait 0.5 seconds

 }

}

Pixel graphics – implementing the NHD-C12832 display

It is also possible to set pixels individually. Program Example 8.9 draws a small cross on
the LCD display with a centre point at location x=10, y=10.

/*Program Example 8.9: Setting individual pixels on the NHD-C12832

 */

#include "mbed.h"

#include "C12832.h"

C12832 lcd(p5, p7, p6, p8, p11); // Initialize lcd

int main(){

 lcd.cls(); // clear screen

 lcd.pixel(10,9,1); // set pixel 1

 lcd.pixel(10,10,1); // set pixel 2

 lcd.pixel(10,11,1); // set pixel 3

 lcd.pixel(9,10,1); // set pixel 4

 lcd.pixel(11,10,1); // set pixel 5

 lcd.copy_to_lcd(); // Send pixel data to screen

}

Pixel graphics – implementing the NHD-C12832 display

With the ability to set and clear
individual pixels, it is possible to
start displaying graphics and images.

The image below shows a 32 x 32
pixel image that represents a flower,
with the lines numbered on the left
hand side.

When displaying this array of data
on an LCD, pixels represented with
an X can be set while pixels
represented with a dash will be left
clear

Pixel graphics – implementing the NHD-C12832 display

The image shown can be defined by an array of
binary values that represent the status of each pixel.

This type of binary image data is often described as
a bitmap.

The table below shows how the bitmap data is
constructed in binary form, by considering line 18 as
an example.

18 _ X X X X X _ X X _ _ X X _ _ _ _ _ _ X X _ _ X X _ _ _ _ X X X

18 0 x 7 D 0 x 9 8 0 x 1 9 0 x 8 7

It can be seen that each row of data is defined as a number of consecutive 8-bit values.
The first 8 pixel values in row 18 represent the binary value b01111101 or 0x7D hex.

The code to implement this flower bitmap on the app board is given in the textbook.

Color LCD displays

For color displays, each pixel is made up of three subpixels
for red, green and blue.

Each subpixel can be set to 256 different shades of its color,
so it is therefore possible for a single LCD pixel to display 256
* 256 * 256 = 16.8 million different colors.

The pixel color is referred to by a 24-bit value where the
highest 8-bits define the red shade, the middle 8 bits define
the green shade and the lower 8 bits represent the blue
shade, as shown in the table alongside

Color 24-bit value

Red 0xFF0000

Green 0x00FF00

Blue 0x0000FF

Yellow 0xFFFF00

Orange 0xFF8000

Purple 0x800080

Black 0x000000

White 0xFFFFFF

Read further:

Learn how to interface the uLCD-144-G2
color LCD display in Section 8.6 of the
textbook.

Mini-project – Digital spirit level

Design, build and test a digital spirit level based on the mbed.

Use an ADXL345 accelerometer to measure the angle of orientation in two planes, a
digital push-to-make switch to allow calibration and zeroing of the orientation, and a
colour LCD to output the measured orientation data, in degrees.

To help you proceed consider the following:

• Design your display to show a pixel or image moving around the LCD screen with

respect to the orientation of the accelerometer.

• Add the digital switch to allow simple calibration and zeroing of the data.

• Improve your display output to give accurate measurements of the 2-plane
orientation angles in degrees from the horizontal (i.e. horizontal = 0o).

• How accurate are your x and y readings? Set up a number of know angles and test
your spirit level; continuously improve your code until accurate readings are achieved
at all angles in both axes.

Chapter quiz questions

1. What are the advantages and disadvantages associated with using an alphanumeric liquid crystal display
in an embedded system?

2. What types of cursor control are commonly available on alphanumeric LCDs?

3. How does the mbed BusOut object help to simplify interfacing an alphanumeric display?

4. What is the function of the E input on an alphanumeric display such as the PC1602F?

5. What does the term ASCII refer to?

6. What are the ASCII values associated with the numerical characters from 0-9?

7. Referring to the TextLCD library, describe the C code required to display the value of a floating point
variable called ‘ratio’ to 2 decimal places in the middle of the second row of a 2x16 character
alphanumeric display?

8. What is a bitmap and how can it be used to display images on an LCD display?

9. List and describe five practical examples of a color LCD used in an embedded system.

10. If a color LCD is filled to a single background color, what colors will the following 24-bit codes give:

a. 0x00FFFF

b. 0x00007F

c. 0x7F7F7F

Chapter Review

• Liquid Crystal Displays (LCDs) use an organic crystal which can polarise and block light
when an electric field is introduced.

• Many types of LCDs are available and, when interfaced with a microcontroller, they allow
digital control of alphanumeric character displays and high resolution colour displays.

• The PC1602F is a 16 column by 2 row character display which can be controlled by the
mbed.

• Data can be sent to the LCD registers to initialise the device and to display character
messages.

• Character data is defined using the 8-bit ASCII table.

• The mbed TextLCD library can be used to simplify working with LCDs and allow the
display of formatted data using the printf() function.

• The NHD-C12832 display, which is installed on the mbed application board, has 128x32
pixels, allowing graphics and images, as well as alphanumeric text, to be displayed.

• Color LCDs, such as the uLCD-144-G2, frequently transfer data through a serial interface,
with each pixel given a 24-bit color setting.

