
tw rev. 19.10.16

Chapter 9: Interrupts,

Timers and Tasks

If you use or reference these slides or the associated textbook, please cite the original authors’ work as follows:

Toulson, R. & Wilmshurst, T. (2016). Fast and Effective Embedded Systems Design - Applying the ARM mbed

(2nd edition), Newnes, Oxford, ISBN: 978-0-08-100880-5.

www.embedded-knowhow.co.uk

http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/
http://www.embedded-knowhow.co.uk/

The very first diagram in this book, repeated below, shows the key features of an

embedded system. Among these is time. Embedded systems have to respond in

a timely manner to events as they happen. Usually, this means they have to be

able to:

• Measure time durations;

• Generate time-based events, which may be single or repetitive;

• Respond with appropriate speed to external events, which may occur at

unpredictable times.

Timers and Interrupts

Tasks: Event-Triggered and Time-Triggered

Task Event or time-triggered

Measure temperature Time (every minute)
Compute and implement heater and fan
settings

Time (every minute)

Respond to user control Event
Record and display temperature Time (every minute)
Orderly switch to battery backup in case
of power loss

Event

In almost all embedded programs, the program has to undertake a number of

different activities. We call these distinct activities tasks.

Once a program has more than one task, we enter the domain of multi-tasking.

Tasks performed by embedded systems tend to fall into two categories:

• event-triggered; occur when a particular external event happens, at a time

which is not predictable;

• time-triggered happen periodically, at a time determined by the microcontroller.

As a simple example, a room temperature controller may have the tasks shown

below.

Polling

There are two main problems with

polling:

• The processor can’t perform

any other operations during a

polling routine

• All inputs are treated as equal;

the urgent change has to wait

its turn before it’s recognised

by the computer.

One way of programming for an event-triggered activity, like a button push, is to

continuously test that external input. This is illustrated below, where a program

is structured as a continuous loop. This way of checking external events is

called polling.

Introducing Interrupts

The interrupt represents a radical

alternative to the polling approach

just described.

With an interrupt, the hardware is

designed so that the external

variable can stop the CPU in its

tracks, and demand attention.

When responding to interrupts,

microcontrollers follow the general

pattern shown.

Simple Interrupts on the mbed

Function Usage
InterruptIn Create an InterruptIn connected to the specified pin
rise Attach a function to call when a rising edge occurs on

the input
fall Attach a function to call when a falling edge occurs on

the input
mode Set the input pin mode

The mbed API exploits only a small subset of the interrupt capability of the

LPC1768 microcontroller. Any of pins 5 to 30 can be used as an interrupt

input, except pins 19 and 20.

/* Program Example 9.1: Simple interrupt example. External input causes

interrupt, while led flashes

*/

#include "mbed.h"

InterruptIn button(p5); //define and name the interrupt input

DigitalOut led(LED1);

DigitalOut flash(LED4);

void ISR1() { //this is the response to the

led = !led; //interrupt, i.e. the ISR

}

int main() {

 button.rise(&ISR1); // attach the address of the ISR

 //function to the interrupt rising edge

 while(1) { //continuous loop, ready to be interrupted

 flash = !flash;

 wait(0.25);

 }

}

Introductory Use of an mbed Interrupt

When the interrupt is activated, the ISR executes and LED1 is toggled. This can

occur at any time in program execution. The program has effectively one time-

triggered task, the switching of LED4, and one event-triggered task, the switching

of LED1. The circuit is simple, as shown.

Getting Deeper into Interrupts

To deal with more complex interrupt applications, most processors contain four

important mechanisms:

• Interrupts can be prioritised, - some can be defined as more important than

others. If two occur at the same time, then the higher priority one executes first.

• Interrupts can be masked, i.e. switched off, if they are not needed, or are likely

to get in the way of more important activity. This masking could be just for a

short period, for example while a critical program section completes.

• Interrupts can be nested. This means that a higher priority interrupt can

interrupt one of lower priority. Working with nested interrupts increases the

demands on the programmer, and is strictly for advanced players only.

• The location of the ISR in memory can be selected, to suit the memory map and

programmer wishes.

Also - the delay between the interrupt occurring, and the processor responding, is

called the interrupt latency.

While the interrupt is waiting for a response from the processor, it is said to be

pending.

Interrupt Detected
This

Interrupt is

enabled?

No

Yes

Interrupt Asserted

Interrupt Flag is set

Higher

Priority Interrupt is

Running?

Yes

No immediate response,

but flag stays set

No

No action till other

ISR completes

Complete Current Instruction

Complete Current Instruction

A Typical Microprocessor Interrupt Response –

 some greater detail

Testing Interrupt Latency

/* Program Example 9.2: Tests interrupt latency. External input causes

interrupt, which pulses external LED while LED4 flashes continuously.

*/

#include "mbed.h"

InterruptIn squarewave(p5); //Connect input square wave here

DigitalOut led(p6);

DigitalOut flash(LED4);

void pulse() { //ISR sets external led high for fixed

duration

 led = 1;

 wait(0.01);

 led = 0;

}

int main() {

 squarewave.rise(&pulse); // attach the address of the pulse function to

 // the rising edge

 while(1) { // interrupt will occur within this endless loop

 flash = !flash;

 wait(0.25);

 }

}

Latency can be observed with this program by observing on an oscilloscope a

square wave input, and on the other beam the interrupt response, i.e. the output

at “led”. The latency is the delay between the two.

Interrupts from Analog Inputs

Question from the Quiz

Aside from digital inputs, it is useful to generate interrupts when analog signals

change, for example if an analog temperature sensor exceeds a certain

threshold. One way to do this is by applying a comparator, as shown.

4. A comparator circuit and LM35 are to be used to create an interrupt source,

using the circuit of Figure 9.5 (as above). The comparator is supplied from 5.0 V,

and the temperature threshold is to be approximately 38 oC. Suggest values for

R1 and R2. Resistor values of 470, 680, 820, 1k, 1k2, 1k5 and 10k are available.

The Digital Counter

It is easy in digital electronics to make electronic counters by connecting together

a series of bistables or flip-flops.

If the input is connected to a clock signal then the counter will count, in binary, the

number of clock pulses applied to it.

The digital number held in the counter can be read, and it is possible to arrange

the necessary logic to preload it with a certain number, or to clear it to zero.

An n-bit counter can count from 0 to (2n – 1). For example, an 8-bit counter can

count from 0000 0000 to 1111 1111, or 0 to 255 in decimal.

If a counter reaches its maximum value, and the input clock pulses keep on

coming, then it overflows back to zero, and starts counting up all over again.

The input signal to a counter can be a series of pulses coming from an external

source, for example counting people going through a door. Alternatively, it can be a

fixed frequency logic signal, such as the clock source within a microcontroller.

If the clock source is a known and stable frequency, then the counter becomes a

timer.

For example, if the clock frequency is 1.000 MHz (hence with period of 1 us, as

shown by TC below), then the count will update every microsecond. If the counter

is cleared to zero and then starts counting, the value held in the counter will give

the elapsed time since the counting started, with a resolution of 1 microsecond.

This can be used to measure time, or trigger an event when a certain time has

elapsed.

Counting and Timing

In general, if TC is the clock period, and n cycles are counted,

then the period during which counting has taken place is nTC .

Many microcontroller counters cause an interrupt as the counter overflows; this

interrupt can be used to record the overflow, and the count can continue in a

useful way. The effective range of the counter has been extended.

If the counter is just free-running with a continuous clock signal, then the “interrupt

on overflow” occurs repeatedly, as shown below. This becomes very useful where

a periodic interrupt is needed.

For example, if an 8-bit counter is clocked with a clock frequency of 1MHz, it will

reach its maximum value and overflow back to zero in 256 us (it’s the 256th pulse

which causes the overflow from 255 to 0). If it’s left running continuously, then this

train of interrupt pulses can be used to synchronise timed activity.

Counting and Timing – Interrupt on Overflow

Questions from the Quiz

6. What is the maximum value, in decimal, that a 12-bit and a 24-bit counter can

count up to?

7. A 4.0 MHz clock signal is connected to the inputs of a 12-bit and a 16-bit

counter. Each starts counting from zero. How long does it take before each it

reaches its maximum value?

8. A 10-bit counter, clocked with an input frequency of 512 kHz, runs continuously.

Every time it overflows, it generates an interrupt. What is the frequency of that

interrupt stream?

Using the mbed Timer

The LPC1768 has four general-purpose timers, a Repetitive Interrupt Timer, and

a System Tick Timer. All are based on the principles just described.

The mbed makes use of these in three distinct applications, the Timer, used for

simple timing applications, Timeout, which calls a function after a pre-determined

delay, and Ticker, which repeatedly calls a function, at a pre-determined rate.

The mbed also applies a Real Time Clock to keep track of time of day, and date.

The mbed Timer allows basic timing activities to take place, for comparatively

short time durations. A Timer can be created, started, stopped and read, as

shown.

Function Usage
start Start the timer

stop Stop the timer

reset Reset the timer to 0

read Get the time passed in seconds

read_ms Get the time passed in milliseconds

read_us Get the time passed in microseconds

/* Program Example 9.3: A simple Timer example, from mbed web

site. Activate Tera Term terminal to test.

 */

#include "mbed.h"

Timer t; // define Timer with name “t”

Serial pc(USBTX, USBRX);

int main() {

 t.start(); //start the timer

 pc.printf("Hello World!\n");

 t.stop(); //stop the timer

//print to pc

 pc.printf("The time taken was %f seconds\n", t.read());

}

A simple Timer Application

This Program Example measures the time taken to write a message to the

screen, and displays that message on Tera Term or CoolTerm.

Using Multiple mbed Timers

/*Program Example 9.4: Program which runs two time-based tasks

 */

#include "mbed.h"

Timer timer_fast; // define Timer with name "timer_fast"

Timer timer_slow; // define Timer with name "timer_slow"

DigitalOut ledA(LED1);

DigitalOut ledB(LED4);

void task_fast(void); //function prototypes

void task_slow(void);

int main() {

 timer_fast.start(); //start the Timers

 timer_slow.start();

 while (1){

 if (timer_fast.read()>0.2){ //test Timer value

 task_fast(); //call the task if trigger time is reached

 timer_fast.reset(); //and reset the Timer

 }

 if (timer_slow.read()>1){ //test Timer value

 task_slow();

 timer_slow.reset();

 }

 }

}

void task_fast(void){ //”Fast” Task

 ledA = !ledA;

}

void task_slow(void){ //”Slow” Task

 ledB = !ledB;

}

This program creates two Timers, timer_fast

and timer_slow. The main program starts

these running, and tests when each exceeds

a certain number. When the time value is

exceeded, a function is called, which flips the

associated led.

Using the mbed Timeout

Timeout allows an event to be triggered by an interrupt, with no polling

needed. Timeout sets up an interrupt to call a function after a specified

delay. The API summary is shown.

Function Usage

attach Attach a function to be called by the Timeout,

specifying the delay in seconds

attach Attach a member function to be called by the

Timeout, specifying the delay in seconds

attach_us Attach a function to be called by the Timeout,

specifying the delay in microseconds

attach_us Attach a member function to be called by the

Timeout, specifying the delay in microseconds

detach Detach the function

A Simple Timeout Application
/*Program Example 9.6: Demonstrates Timeout, by triggering an event a fixed

duration after a button press. */

#include "mbed.h"

Timeout Response; //create a Timeout, and name it "Response"

DigitalIn button (p5);

DigitalOut led1(LED1); //blinks in time with main while(1) loop

DigitalOut led2(LED2); //set high fixed period after button press

DigitalOut led3(LED3); //goes high when button is pressed

void blink() { //this function is called at the end of the Timeout

 led2 = 1;

 wait(0.5);

 led2=0;

}

int main() {

 while(1) {

 if(button==1){

 Response.attach(&blink,2.0); //attach blink function to Response

 //Timeout, to occur after 2 seconds

 led3=1; //shows button has been pressed

 }

 else {

 led3=0;

 }

 led1=!led1;

 wait(0.2);

 }

}

This Program Example causes an action to be triggered a fixed

period after an external event. If the button is pressed, the blink()

function gets attached to the Response Timeout. The program is a

microcosm of many embedded systems - a time-triggered task needs

to keep going, while an event-triggered task takes place at

unpredictable times.

Using the mbed Ticker

The mbed Ticker sets up a recurring interrupt, which can be used to call a

function periodically, at a rate decided by the programmer. The API

summary is shown.

Function Usage

attach Attach a function to be called by the Ticker,

specifying the interval in seconds

attach Attach a member function to be called by the

Ticker, specifying the interval in seconds

attach_us Attach a function to be called by the Ticker,

specifying the interval in micro-seconds

attach_us Attach a member function to be called by the

Ticker, specifying the interval in micro-seconds

detach Detach the function

/* Program Example 9.9: Simple demo of "Ticker". Replicates behaviour of

first led flashing program.

*/

#include "mbed.h"

void led_switch(void);

Ticker time_up; //define a Ticker, with name “time_up”

DigitalOut myled(LED1);

void led_switch(){ //the function that Ticker will call

 myled=!myled;

}

int main(){

 time_up.attach(&led_switch, 0.2); //initialises the ticker

 while(1){ //sit in a loop doing nothing, waiting for

 //Ticker interrupt

 }

}

Applying Ticker to the First Example Program

Creating a periodic event is one of the most common requirements in an

embedded system. This program switches the LED every 200 ms, using

Timeout rather than a wait() function.

The Real Time Clock

The Real Time Clock (RTC) is an ultra-low-power peripheral on the LPC1768,

which is implemented by the mbed.

The RTC is a timing/counting system which maintains a calendar and time-of-

day clock, with registers for seconds, minutes, hours, day, month, year, day of

month and day of year. It can also generate an alarm for a specific date and

time.

It runs from its own 32 kHz crystal oscillator, and can have its own independent

battery power supply. It can thus be powered, and continue in operation, even

if the rest of the microcontroller is powered down.

The mbed API doesn’t create any C++ objects, but just implements standard

functions from the standard C library, as shown.

Function Usage

Time Get the current time

set_time Set the current time

mktime Converts a tm structure (a format for a time record)

to a timestamp

localtime Converts a timestamp to a tm structure

ctime Converts a timestamp to a human-readable string

strftime Converts a tm structure to a custom format human-

readable string

Switch Debouncing

Ideal switch response Actual switch response

The mechanical contacts of a switch literally bounce together, as the switch

closes. This lasts for a few milliseconds, and can cause a digital input to swing

wildly between Logic 0 and Logic 1 for a short time after a switch closes, as

illustrated.

There are several techniques, in hardware and software, which allow switch

debouncing.

Demonstrating switch bounce

/* Program Example 9.12: Event driven LED switching with switch debounce

 */

#include "mbed.h"

InterruptIn button(p18); // Interrupt on digital pushbutton input p18

DigitalOut led1(LED1); // digital out to LED1

Timer debounce; // define debounce timer

void toggle(void); // function prototype

int main() {

 debounce.start();

 button.rise(&toggle); // attach the address of the toggle

} // function to the rising

edge

void toggle() {

if (debounce.read_ms()>10) // only allow toggle if debounce timer

 led1=!led1; // has passed 10 ms

 debounce.reset(); // restart timer when the toggle is

performed

}

Event driven LED Switching with Switch Debounce

This program solves the switch bounce issue by starting a timer on a switch

event, and ensuring that 10 ms has elapsed before allowing a second event

to be processed.

Introducing the Real Time Operating

System (RTOS)

Programs so far in this book have almost all been

structured around a main loop (sometimes called a

super loop), as symbolised. This is adequate for

many programs, but there comes point when the

structure is no longer adequate; the loop might

become just too big, or some of the tasks are

intermittent, or the tasks or ISRs cause

unacceptable delay to each other.

The RTOS provides a different approach to program development. With the

RTOS, control of the CPU and all system resources are handed to the operating

system (OS). It is the OS which now determines which section of the program is

to run, for how long, and how it accesses system resources. The application

program itself is subservient to the OS.

RTOS Tasks

A program written for an RTOS is structured into tasks or threads. Each task is

written as a self-contained program module. The tasks can be prioritised,

though this is not always the case. The RTOS performs three main functions:

• It decides which task/thread should run and for how long,

• It provides communication and synchronisation between tasks,

• It controls the use of resources shared between the tasks, for example

memory and hardware peripherals.

RTOS Scheduling

An important part of the RTOS is its scheduler, which decides which task runs

and for how long.

A simple example is the Round Robin scheduler, as illustrated. The scheduler

synchronises its activity to a clock tick, a periodic interrupt from an internal

Timer, like the mbed Ticker.

At every clock tick, the scheduler determines if a different task should be given

CPU time. In Round Robin scheduling, the task is always switched - whatever

task is executing suspends its activity mid-flow, and waits for its turn again.

Round Robin scheduling doesn’t allow task prioritisation. There are other forms

of scheduling which do.

Other features of the RTOS allow tasks to be synchronised, or to pass data

between each other.

Round Robin Scheduling, Three

Tasks Running in Turn

Chapter Review

• Signal inputs can be repeatedly tested in a loop, a process known as polling.

• An interrupt allows an external signal to interrupt the action of the CPU, and

start code execution from somewhere else in the program.

• Interrupts are a powerful addition to the structure of the microprocessor.

Generally multiple interrupt inputs are possible, which adds considerably to

the complexity of both hardware and software.

• It is easy to make a digital counter circuit, which counts the number of logic

pulses presented at its input. Such a counter can be readily integrated into a

microcontroller structure.

• Given a clock signal of known and reliable frequency, a counter can readily be

used as a timer.

• Timers can be structured in different ways so that interrupts can be generated

from their output, for example to give a continuous sequence of interrupt

pulses.

• Switch debounce is required in many cases to avoid multiple responses being

triggered by a single switch press.

