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The very first diagram in this book, repeated below, shows the key features of an 

embedded system. Among these is time. Embedded systems have to respond in 

a timely manner to events as they happen. Usually, this means they have to be 

able to: 

• Measure time durations;  

• Generate time-based events, which may be single or repetitive; 

• Respond with appropriate speed to external events, which may occur at 

unpredictable times. 

Timers and Interrupts 



Tasks: Event-Triggered and Time-Triggered 

Task Event or time-triggered 

Measure temperature Time (every minute) 
Compute and implement heater and fan 
settings 

Time (every minute) 

Respond to user control Event 
Record and display temperature Time (every minute) 
Orderly switch to battery backup in case 
of power loss 

Event 

In almost all embedded programs, the program has to undertake a number of 

different activities. We call these distinct activities tasks. 

Once a program has more than one task, we enter the domain of multi-tasking.  

Tasks performed by embedded systems tend to fall into two categories: 

•  event-triggered; occur when a particular external event happens, at a time 

which is not predictable;  

• time-triggered happen periodically, at a time determined by the microcontroller. 

 

As a simple example, a room temperature controller may have the tasks shown 

below.  



Polling 

There are two main problems with 

polling: 

• The processor can’t perform 

any other operations during a 

polling routine 

• All inputs are treated as equal; 

the urgent change has to wait 

its turn before it’s recognised 

by the computer. 

One way of programming for an event-triggered activity, like a button push, is to 

continuously test that external input. This is illustrated below, where a program 

is structured as a continuous loop. This way of checking external events is 

called polling.  



Introducing Interrupts 

The interrupt represents a radical 

alternative to the polling approach 

just described.  

With an interrupt, the hardware is 

designed so that the external 

variable can stop the CPU in its 

tracks, and demand attention.  

When responding to interrupts, 

microcontrollers follow the general 

pattern shown. 



Simple Interrupts on the mbed 

Function Usage 
InterruptIn Create an InterruptIn connected to the specified pin 
rise Attach a function to call when a rising edge occurs on 

the input 
fall Attach a function to call when a falling edge occurs on 

the input 
mode Set the input pin mode 

The mbed API exploits only a small subset of the interrupt capability of the 

LPC1768 microcontroller. Any of pins 5 to 30 can be used as an interrupt 

input, except pins 19 and 20.  



/* Program Example 9.1: Simple interrupt example. External input causes 

interrupt, while led flashes   

                                                                            

*/ 

#include "mbed.h" 

InterruptIn button(p5);    //define and name the interrupt input 

DigitalOut led(LED1);        

DigitalOut flash(LED4); 

  

void ISR1() {          //this is the response to the 

led = !led;      //interrupt, i.e. the ISR 

} 

  

int main() { 

  button.rise(&ISR1);   // attach the address of the ISR 

                //function to the interrupt rising edge 

  while(1) {    //continuous loop, ready to be interrupted 

    flash = !flash; 

    wait(0.25); 

  } 

} 

Introductory Use of an mbed Interrupt 

When the interrupt is activated, the ISR executes and LED1 is toggled. This can 

occur at any time in program execution. The program has effectively one time-

triggered task, the switching of LED4, and one event-triggered task, the switching 

of LED1. The circuit is simple, as shown. 



Getting Deeper into Interrupts 

To deal with more complex interrupt applications, most processors contain four 

important mechanisms:  

• Interrupts can be prioritised, - some can be defined as more important than 

others. If two occur at the same time, then the higher priority one executes first.  

• Interrupts can be masked, i.e. switched off, if they are not needed, or are likely 

to get in the way of more important activity. This masking could be just for a 

short period, for example while a critical program section completes. 

• Interrupts can be nested. This means that a higher priority interrupt can 

interrupt one of lower priority. Working with nested interrupts increases the 

demands on the programmer, and is strictly for advanced players only. 

• The location of the ISR in memory can be selected, to suit the memory map and 

programmer wishes. 

 

Also - the delay between the interrupt occurring, and the processor responding, is 

called the interrupt latency.  

While the interrupt is waiting for a response from the processor, it is said to be 

pending.  



Interrupt Detected 
This  

Interrupt is 

enabled?  

No 

Yes 

Interrupt Asserted 

Interrupt Flag is set 

Higher  

Priority Interrupt is 

Running?  

Yes 

No immediate response, 

but flag stays set 

No 

No action till other 

ISR completes 

Complete Current Instruction 

Complete Current Instruction 

A Typical Microprocessor Interrupt Response –  

      some greater detail 



Testing Interrupt Latency 

/* Program Example 9.2: Tests interrupt latency. External input causes 

interrupt, which pulses external LED while LED4 flashes continuously.                                                                 

*/ 

#include "mbed.h" 

InterruptIn squarewave(p5);     //Connect input square wave here 

DigitalOut led(p6); 

DigitalOut flash(LED4); 

 

void pulse() {                 //ISR sets external led high for fixed 

duration 

  led = 1; 

  wait(0.01); 

  led = 0; 

} 

  

int main() { 

  squarewave.rise(&pulse);  // attach the address of the pulse function to 

                                                        // the rising edge 

  while(1) {              // interrupt will occur within this endless loop 

    flash = !flash; 

    wait(0.25); 

  } 

} 

Latency can be observed with this program by observing on an oscilloscope a 

square wave input, and on the other beam the interrupt response, i.e. the output 

at “led”. The latency is the delay between the two. 



Interrupts from Analog Inputs 

Question from the Quiz 

Aside from digital inputs, it is useful to generate interrupts when analog signals 

change, for example if an analog temperature sensor exceeds a certain 

threshold. One way to do this is by applying a comparator, as shown.  

4. A comparator circuit and LM35 are to be used to create an interrupt source, 

using the circuit of Figure 9.5 (as above). The comparator is supplied from 5.0 V, 

and the temperature threshold is to be approximately 38 oC. Suggest values for 

R1 and R2. Resistor values of 470, 680, 820, 1k, 1k2, 1k5 and 10k are available. 



The Digital Counter 

It is easy  in digital electronics to make electronic counters by connecting together 

a series of bistables or flip-flops.  

If the input is connected to a clock signal then the counter will count, in binary, the 

number of clock pulses applied to it.  

The digital number held in the counter can be read, and it is possible to arrange 

the necessary logic to preload it with a certain number, or to clear it to zero. 

An n-bit counter can count from 0 to (2n – 1). For example, an 8-bit counter can 

count from 0000 0000 to 1111 1111, or 0 to 255 in decimal.  

If a counter reaches its maximum value, and the input clock pulses keep on 

coming, then it overflows back to zero, and starts counting up all over again.  



The input signal to a counter can be a series of pulses coming from an external 

source, for example counting people going through a door. Alternatively, it can be a 

fixed frequency logic signal, such as the clock source within a microcontroller.  

If the clock source is a known and stable frequency, then the counter becomes a 

timer.  

For example, if the clock frequency is 1.000 MHz (hence with period of 1 us, as 

shown by TC below), then the count will update every microsecond. If the counter 

is cleared to zero and then starts counting, the value held in the counter will give 

the elapsed time since the counting started, with a resolution of 1 microsecond.  

This can be used to measure time, or trigger an event when a certain time has 

elapsed.  

 

Counting and Timing 

In general, if TC is the clock period, and n cycles are counted, 

then the period during which counting has taken place is nTC . 



Many microcontroller counters cause an interrupt as the counter overflows; this 

interrupt can be used to record the overflow, and the count can continue in a 

useful way.  The effective range of the counter has been extended. 

If the counter is just free-running with a continuous clock signal, then the “interrupt 

on overflow” occurs repeatedly, as shown below. This becomes very useful where 

a periodic interrupt is needed.  

For example, if an 8-bit counter is clocked with a clock frequency of 1MHz, it will 

reach its maximum value and overflow back to zero in 256 us (it’s the 256th pulse 

which causes the overflow from 255 to 0). If it’s left running continuously, then this 

train of interrupt pulses can be used to synchronise timed activity. 

Counting and Timing – Interrupt on Overflow 



Questions from the Quiz 

6. What is the maximum value, in decimal, that a 12-bit and a 24-bit counter can 

count up to?  

7. A 4.0 MHz clock signal is connected to the inputs of a 12-bit and a 16-bit 

counter. Each starts counting from zero. How long does it take before each it 

reaches its maximum value? 

8. A 10-bit counter, clocked with an input frequency of 512 kHz, runs continuously. 

Every time it overflows, it generates an interrupt. What is the frequency of that 

interrupt stream? 



Using the mbed Timer 

The LPC1768 has four general-purpose timers, a Repetitive Interrupt Timer, and 

a System Tick Timer. All are based on the principles just described.  

The mbed makes use of these in three distinct applications, the Timer, used for 

simple timing applications, Timeout, which calls a function after a pre-determined 

delay, and Ticker, which repeatedly calls a function, at a pre-determined rate.  

The mbed also applies a Real Time Clock to keep track of time of day, and date. 

The mbed Timer allows basic timing activities to take place, for comparatively 

short time durations. A Timer can be created, started, stopped and read, as 

shown.  

Function Usage 
start Start the timer 

stop Stop the timer 

reset Reset the timer to 0 

read Get the time passed in seconds 

read_ms Get the time passed in milliseconds 

read_us Get the time passed in microseconds 



/* Program Example 9.3: A simple Timer example, from mbed web 

site. Activate Tera Term terminal to test.            

                                                */  

 

#include "mbed.h" 

Timer t;             // define Timer with name “t” 

Serial pc(USBTX, USBRX); 

  

int main() { 

  t.start();                              //start the timer 

  pc.printf("Hello World!\n"); 

  t.stop();                               //stop the timer               

//print to pc 

  pc.printf("The time taken was %f seconds\n", t.read()); 

} 

A simple Timer Application 

This Program Example measures the time taken to write a message to the 

screen, and displays that message on Tera Term or CoolTerm.  



Using Multiple mbed Timers 

/*Program Example 9.4: Program which runs two time-based tasks 

                                                                       */ 

#include "mbed.h" 

Timer timer_fast;                    // define Timer with name "timer_fast" 

Timer timer_slow;                    // define Timer with name "timer_slow" 

DigitalOut ledA(LED1); 

DigitalOut ledB(LED4); 

  

void task_fast(void);                //function prototypes 

void task_slow(void); 

  

int main() { 

  timer_fast.start();    //start the Timers 

  timer_slow.start();  

  while (1){ 

    if (timer_fast.read()>0.2){  //test Timer value 

      task_fast();               //call the task if trigger time is reached 

      timer_fast.reset();            //and reset the Timer 

    } 

    if (timer_slow.read()>1){     //test Timer value 

      task_slow(); 

      timer_slow.reset(); 

    } 

  } 

} 

  

void task_fast(void){          //”Fast” Task 

  ledA = !ledA; 

} 

void task_slow(void){         //”Slow” Task 

  ledB = !ledB; 

} 

This program creates two Timers,  timer_fast 

and timer_slow. The main program starts 

these running, and tests when each exceeds 

a certain number. When the time value is 

exceeded, a function is called, which flips the 

associated led.  



Using the mbed Timeout 

Timeout allows an event to be triggered by an interrupt, with no polling 

needed. Timeout sets up an interrupt to call a function after a specified 

delay. The API summary is shown.  

Function Usage 

attach Attach a function to be called by the Timeout, 

specifying the delay in seconds 

attach Attach a member function to be called by the 

Timeout, specifying the delay in seconds 

attach_us Attach a function to be called by the Timeout, 

specifying the delay in microseconds 

attach_us Attach a member function to be called by the 

Timeout, specifying the delay in microseconds 

detach Detach the function 



A Simple Timeout Application 
/*Program Example 9.6: Demonstrates Timeout, by triggering an event a fixed 

duration after a button press.                                         */  

  

#include "mbed.h" 

Timeout Response;            //create a Timeout, and name it "Response" 

DigitalIn button (p5); 

DigitalOut led1(LED1);     //blinks in time with main while(1) loop 

DigitalOut led2(LED2);     //set high fixed period after button press 

DigitalOut led3(LED3);     //goes high when button is pressed 

  

void blink() {           //this function is called at the end of the Timeout 

  led2 = 1; 

  wait(0.5); 

  led2=0; 

}  

int main() { 

  while(1) { 

    if(button==1){ 

      Response.attach(&blink,2.0);  //attach blink function to Response 

                                           //Timeout, to occur after 2 seconds 

      led3=1;                      //shows button has been pressed 

    }   

    else { 

      led3=0; 

    } 

    led1=!led1;   

    wait(0.2); 

  } 

} 

This Program Example causes an action to be triggered a fixed 

period after an external event. If the button is pressed, the blink( )  

function gets attached to the Response Timeout. The program is a 

microcosm of many embedded systems - a time-triggered task needs 

to keep going, while an event-triggered task takes place at 

unpredictable times.  



Using the mbed Ticker 

The mbed Ticker sets up a recurring interrupt, which can be used to call a 

function periodically, at a rate decided by the programmer. The API 

summary is shown. 

Function Usage 

attach Attach a function to be called by the Ticker, 

specifying the interval in seconds 

attach Attach a member function to be called by the 

Ticker, specifying the interval in seconds 

attach_us Attach a function to be called by the Ticker, 

specifying the interval in micro-seconds 

attach_us Attach a member function to be called by the 

Ticker, specifying the interval in micro-seconds 

detach Detach the function 



/* Program Example 9.9: Simple demo of "Ticker". Replicates behaviour of 

first led flashing program.                                                                              

*/ 

 

#include "mbed.h" 

void led_switch(void); 

Ticker time_up;                     //define a Ticker, with name “time_up” 

DigitalOut myled(LED1); 

  

void led_switch(){                  //the function that Ticker will call 

    myled=!myled;   

} 

  

int main(){ 

    time_up.attach(&led_switch, 0.2);     //initialises the ticker  

    while(1){              //sit in a loop doing nothing, waiting for 

    //Ticker interrupt 

    } 

} 

Applying Ticker to the First Example Program 

Creating a periodic event is one of the most common requirements in an 

embedded system. This program switches the LED every 200 ms, using 

Timeout rather than a wait( ) function. 



The Real Time Clock  

The Real Time Clock (RTC) is an ultra-low-power peripheral on the LPC1768, 

which is implemented by the mbed.  

The RTC is a timing/counting system which maintains a calendar and time-of-

day clock, with registers for seconds, minutes, hours, day, month, year, day of 

month and day of year. It can also generate an alarm for a specific date and 

time.  

It runs from its own 32 kHz crystal oscillator, and can have its own independent 

battery power supply. It can thus be powered, and continue in operation, even 

if the rest of the microcontroller is powered down.  

The mbed API doesn’t create any C++ objects, but just implements standard 

functions from the standard C library, as shown. 

Function Usage 

Time Get the current time 

set_time Set the current time 

mktime Converts a tm structure (a format for a time record) 

to a timestamp 

localtime Converts a timestamp to a tm structure 

ctime Converts a timestamp to a human-readable string 

strftime Converts a tm structure to a custom format human-

readable string 



Switch Debouncing 

 

Ideal switch response Actual switch response 

The mechanical contacts of a switch literally bounce together, as the switch 

closes. This lasts for a few milliseconds, and can cause a digital input to swing 

wildly between Logic 0 and Logic 1 for a short time after a switch closes, as 

illustrated.  

There are several techniques, in hardware and software,  which allow switch 

debouncing. 

Demonstrating switch bounce 



/* Program Example 9.12: Event driven LED switching with switch debounce 

                                                                       */ 

#include "mbed.h" 

 

InterruptIn button(p18);    // Interrupt on digital pushbutton input p18 

DigitalOut led1(LED1);           // digital out to LED1 

Timer debounce;                  // define debounce timer 

 

void toggle(void);               // function prototype 

 

int main() { 

  debounce.start(); 

  button.rise(&toggle);          // attach the address of the toggle 

}                                             // function to the rising 

edge  

void toggle() { 

if (debounce.read_ms()>10)      // only allow toggle if debounce timer  

  led1=!led1;                                       // has passed 10 ms 

  debounce.reset();              // restart timer when the toggle is 

performed 

} 

Event driven LED Switching with Switch Debounce 

This program solves the switch bounce issue by starting a timer on a switch 

event, and ensuring that 10 ms has elapsed before allowing a second event 

to be processed. 



Introducing the Real Time Operating 

System (RTOS) 

Programs so far in this book have almost all been 

structured around a main loop (sometimes called a 

super loop), as symbolised. This is adequate for 

many programs, but there comes point when the 

structure is no longer adequate; the loop might 

become just too big, or some of the tasks are 

intermittent, or the tasks or ISRs cause 

unacceptable delay to each other.  

The RTOS provides a different approach to program development. With the 

RTOS, control of the CPU and all system resources are handed to the operating 

system (OS). It is the OS which now determines which section of the program is 

to run, for how long, and how it accesses system resources. The application 

program itself is subservient to the OS. 



RTOS Tasks 

A program written for an RTOS is structured into tasks or threads. Each task is 

written as a self-contained program module. The tasks can be prioritised, 

though this is not always the case. The RTOS performs three main functions: 

• It decides which task/thread should run and for how long, 

• It provides communication and synchronisation between tasks, 

• It controls the use of resources shared between the tasks, for example 

memory and hardware peripherals. 



RTOS Scheduling 

An important part of the RTOS is its scheduler, which decides which task runs 

and for how long.  

A simple example is the Round Robin scheduler, as illustrated. The scheduler 

synchronises its activity to a clock tick, a periodic interrupt from an internal 

Timer, like the mbed Ticker.  

At every clock tick, the scheduler determines if a different task should be given 

CPU time. In Round Robin scheduling, the task is always switched - whatever 

task is executing  suspends its activity mid-flow, and waits for its turn again.  

Round Robin scheduling doesn’t allow task prioritisation. There are other forms 

of scheduling which do.  

Other features of the RTOS allow tasks to be synchronised, or to pass data 

between each other.  

Round Robin Scheduling, Three 

Tasks Running in Turn 



Chapter Review 

• Signal inputs can be repeatedly tested in a loop, a process known as polling.  

• An interrupt allows an external signal to interrupt the action of the CPU, and 

start code execution from somewhere else in the program.  

• Interrupts are a powerful addition to the structure of the microprocessor. 

Generally multiple interrupt inputs are possible, which adds considerably to 

the complexity of both hardware and software. 

• It is easy to make a digital counter circuit, which counts the number of logic 

pulses presented at its input. Such a counter can be readily integrated into a 

microcontroller structure. 

• Given a clock signal of known and reliable frequency, a counter can readily be 

used as a timer. 

• Timers can be structured in different ways so that interrupts can be generated 

from their output, for example to give a continuous sequence of interrupt 

pulses. 

• Switch debounce is required in many cases to avoid multiple responses being 

triggered by a single switch press. 


